

The Atom's Family

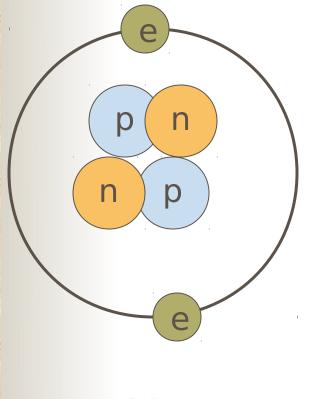
A deeper look at the elements in the Periodic Table

Atoms, Elements and Molecules

- Atom = smallest unit of an element
- Element =
- Molecule = a collection of atoms, bound together.
 - Molecules can be made from only one element, such as H₂ or O₂
 - Molecules can be made from different elements, such as H₂O or CO₂

Parts of an Atom

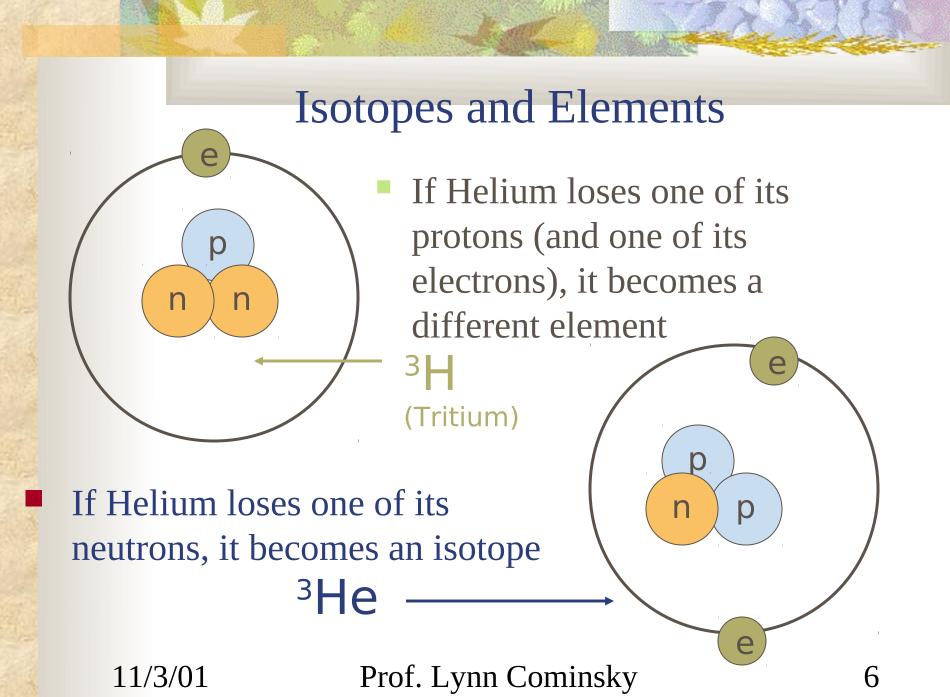
- Each element in the Periodic Table has a different number of protons in its nucleus
 - Protons have positive charge
 - Change the number of protons \rightarrow change elements
 - This is called nuclear physics
- The element also has the same number of electrons
 - Electrons have negative charge
 - Change the number of electrons \rightarrow ionize the element
 - This is called chemistry
- Some elements also have neutrons
 - Neutrons have no charge
 - They act as glue to hold the nuclei together
 - 11/3/01


The Hydrogen Atom

- One electron orbiting a nucleus
 - 1 proton = Z = atomic number
- $0 \text{ neutrons} = \mathbf{N}$
 - Total mass = A = Z+N =1
- Singly ionized Hydrogen is missing one electron = ¹H⁺
- Add a neutron and you have Deuterium = ${}^{2}H = D$

11/3/01

The Helium Atom



⁴He

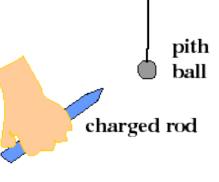
11/3/01

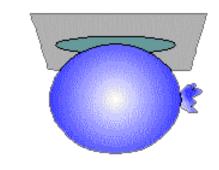
• Two electrons orbiting a nucleus

- 2 protons = **Z** = atomic number
- 2 neutrons = N
 - Total mass = A = Z+N = 4
- Singly ionized Helium is missing one electron = ⁴He⁺
- Doubly ionized Helium is missing both electrons = α particle = ${}^{4}\text{He}^{++}$

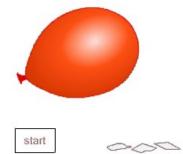
Alphas, Betas and Gammas

- Alpha particles are doubly ionized Helium nuclei
 ⁴He⁺⁺
- Beta particles are either electrons (e⁻) or their anti-particles, positrons (e⁺)
- Gamma rays are the most energetic type of light they are not particles at all!
- Alphas, beta and gammas are often emitted by radioactive decay of unstable nuclei
- Example: ${}^{3}H \rightarrow {}^{3}He + ?$


11/3/01Prof. Lynn Cominsky


First Activity: A deeper look at charge

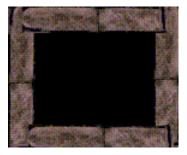
- How do we know that there are two different types of charged particles?
- How can you show that there are two types of charges?
- How can you figure out whether like or unlike charges attract each other?
- Why did we decide that the negatively charged particles were the electrons?


Equipment for first activity

SilkFur

- Plastic rods
- Pith balls (styrofoam ball covered with metal foil)
- Balloons
- Small pieces of paper

11/3/01


More questions for first activity

- What happens when you first bring the plastic rod near the pith ball? Why?
- What happens if you touch the rod to the pith ball?
- What is the difference between the silk and the fur?
- Why does a balloon stick to the ceiling if you rub it with wool?
- Why does the balloon attract small pieces of paper?
 11/3/01 Prof. Lynn Cominsky 10

Electrons and Ben Franklin

Ben Franklin's "single fluid theory" showed that a given body possessing a normal amount of electric fluid was called *neutral*. During the process of charging, the fluid was transferred from one body to the other; the body with the deficiency being charged *minus* and the body with the excess charged plus. But no fluid is lost. Ben's "single fluid theory" led to the electron theory in 1900: electrons move about conductors much as a fluid might move.

http://www.franklinbusybody.com/

11/3/01

Prof. Lynn Cominsky

11

Second Activity: A deeper look at electrons

- How can we tell which elements are good electrical conductors?
- Are all metals good conductors?
- Are all good conductors metals?
- How can we tell which materials are good electrical insulators?
- How do you think the electrons in conductors differ from those in insulators?

Equipment for second activity

- Insulated wires
- Batteries
- Bulbs

- Other things like rubber, wood, glass, plastic, aluminum, paper clips, etc.
- Masking tape

11/3/01

More questions for second activity

- Why is a circuit called a circuit?
- Were you surprised by the some of the items that were conductors?
- Were you surprised by some of the items that were insulators?
- What did the conductors have in common?
- What did the insulators have in common?

11/3/01

Periodic Table of the Elements

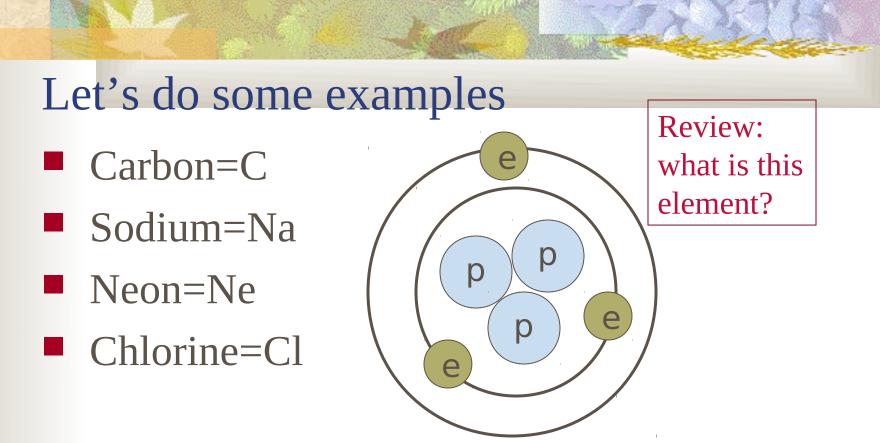
I	I I					Rev												2 He
1	.i ³	Be^4				are				'S			B ⁵	C ⁶	7 N	0 8	<mark>Р</mark> 9	10 Ne
r	л Na	12 Mg				in each box?							13 Al	14 Si	15 P	S ¹⁶	17 Cl	18 Ar
ŀ	19 (20 Ca	21 Sc	22 Ti	23 V	²⁴ Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
F	37 Rb	.38 Sr	Y ³⁹	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	Ag ⁴⁷	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 <mark>Xe</mark>
(55 Cs	56 Ba	57 La	72 Hf	73 Ta	74 W	75 Re		77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
F	87 r	88 Ra	89 Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	i1⊕ Uun								

58	59	60	61	62	63	64	65	66	67	68	69	70	71
Ce	Pr	Nd										Yb	Lu
90	91	92	93	94	95	96	97	98	99	100	101	102	103
Th	Pa	the second s	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

11/3/01

Navigating the Periodic Table

- The rows are the "periods"
 - Each period starts a new shell of electrons
 - The periods are numbered starting with 1 at the top
 - The columns are the "groups"


11/3/01

- Each group has similar chemical properties
- The groups are numbered starting with 1 at the left
- Similar properties come from electron shell structure

Electron shells and atomic structure

- 1. The first shell will hold up to **two** electrons.
- 2. The second (and third) shells will hold up to **eight** electrons
- 3. Sometimes shells are made of sub-shells (2+6=8, 8+10=18)
- 4. Filled outer shells make an atom very stable
- 5. Elements with electrons outside of filled shells or with missing electrons are very chemically reactive

11/3/01

How many protons and electrons do these elements have?

Draw the electron shell structure for each.

11/3/01

Shells: thinking deeper

- Where are the elements with very stable outer shells in the periodic table? What do we call them?
- 2. Where are the elements with one electron outside a filled shell?
- 3. Where are the elements that need one electron to fill their shells?
- 4. What happens when these two types of elements are combined chemically?
 11/3/01 Prof. Lynn Cominsky

Conductors: A deeper look

- The best conductors are Copper (Cu), Silver (Ag) and Gold (Au)
- Cu has Z=29, Ag has Z=47 and Au has Z=79
- How are these electrons arranged?
 - 29 = 2+8+8+10+1 79 = 2+8+8+18 + 18+14+10 +1 18+14+10 +1

So, why are these elements good conductors?

11/3/01Prof. Lynn Cominsky

Third activity: A deeper look at magnets

- How can you show that there are two types of magnetic poles? Do all magnets have exactly two poles?
- How can you figure out whether like or unlike poles attract each other?
- How did we decide which pole to call North?
- What is the orientation of the magnet inside the Earth?

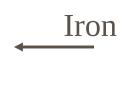
11/3/01

Equipment for third activity

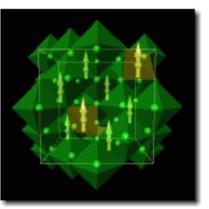
- Magnets of various sizes and shapes
- Some pieces of non-magnetized metal
- Other things like rubber, wood, glass, plastic, aluminum, paper clips, etc.
- Compasses
- Mystery plates

11/3/01


More questions for third activity


- What is located at each labeled spot on the Mystery plates?
 - Are all metals attracted to magnets?
- How can you tell the difference between a magnet and a metal?
- Where are the poles in a bar magnet?
- Where are the poles in a horseshoe magnet?
- Where are the poles in a refrigerator magnet? How many are there?

11/3/01


Magnetic elements: A deeper look

- Individual electrons can act as magnets
- In Iron, it is easier to make the electrons line up than in other materials. When electrons line up, they make a stronger magnet.

Lodestone (Magnetite)

Magnets: Thinking deeper

- In most materials, if you add energy to the electrons, you can get them to move and realign
- Can you think of ways to add energy to electrons?
- How can you make a magnet?
- How can you demagnetize a magnet?
- What happens when you break a magnet?

11/3/01

Resources

- http://www.bbc.co.uk/education/gcsebitesize/science_phy sics/electricity_and_magnetism/electric_charge_and_curr ent_rev.shtml#charge
- http://blueox.uoregon.edu/~courses/dlivelyb/ph161/L6.ht ml#charge
- http://chemicool.com/
- http://www.bbc.co.uk/education/gcsebitesize/science_che mistry/structures_of_materials/electron_shells_rev.shtml
- http://www.thetech.org/exhibits_events/noyce_center/topi cs/13g.html
- Physics by Inquiry L. McDermott and the PEG at U Washington

11/3/01

Resources (continued)

- http://www.ill.fr/dif/3D-crystals/magnets.html
- http://www2.worldbook.com/assets/products_gfx/60031.p df
- http://www.lessonplanspage.com/ScienceMagnetismUnit
 3MakeUseCompass2.htm (second grade lesson plan)
- http://www.askeric.org/Virtual/Lessons/Science/Earth_Sc ience/EAR0071.html (fourth-fifth lesson plan)