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Editor’s note

This review article, the second in a series, is made possible by a grant from the National Science Foundation.

General relativity primer
Richard H. Price

Department of Physics, University of Utah, Salt Lake City, Utah 84112

(Received 14 July 1980; accepted for publication 2 December 1981)

In this tutorial article the physical ideas underlying general relativity theory are discussed and the
basic mathematical techniques (tensor calculus, Riemann curvature) needed to describe them are
developed. The general relativity field equations are presented and are used in several applications

including a discussion of black holes.

L. INTRODUCTION
A, Purpose and outline

Special relativity theory (SRT) is a part of the intellectual
toolbox of all physicists and a feature of the physicist’s edu-
cation even at the undergraduate level. The novel concepts
of SRT, so shocking in 1905, hold no special terror now.
The same, regrettably, cannot be said for the general rela-
tivity theory (GRT), Einstein’s relativistic theory of grav-
ity. The imagery of space-time curvature, and such exotica
as black holes, give GRT such a recondite aura that it is too
often regarded as hopelessly mystical, even by students and
teachers who accept quantum mechanics as a perfectly rea-
sonable description of the world. It is my goal in this article
to show that this viewpoint on GRT is unjustified, that
relativistic gravity is intuitively accessible and that space-
time curvature is a natural conceptual basis for it. More
specifically this article presents the mathematical and
physical structure of GRT for a student or a teacher of
physics, or a physicist in another field, in such a way that
these readers can understand how calculations are done in
GRT and what they mean. This article then is intended to
present in a fairly small number of pages a subject usually
dealt with in full length textbooks.' This is not, however, a
“popular” introduction limited to metaphors, analogies,
and word pictures. Such introductions (and in fact Sec. I1
below could stand alone as one} are of value but they do not
teach the theory. They give some answers but not the gen-
eral scheme for finding answers. This article presents GRT
as a physically motivated mathematical theory of gravity.
The distinction between such a presentation and a popular
one is particularly sharp for GRT since the necessary
mathematics of tensors is not part of the background of
most physicists. To avoid tensor calculus would be to avoid
a meaningful expression of the ideas of GRT. To include
the mathematics, unfortunately, engenders a great danger,
that of the mathematical trees obscuring the physical for-
est. It is much too easy to forget that all the formulas and
transformations, and all the mathematical symbols drip-
ping with subscripts, are part of a description of the phys-
ical world. The necessary mathematics of tensors and of
curvature are introduced in this article in the most painless
and the most physically motivated way I could manage,
but I still feel it necessary to urge the reader in the strongest
possible terms never to lose sight of the simple underlying
physical and geometrical principles.
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Clearly in a small article covering a large subject, sacri-
fices must be made. The most regrettable sacrifice will be
the omission of all but a cursory discussion of the stress-
energy tensor, the “source” of the gravitational field. Also
omitted will be many mathematical details, some of them
formal and elegant, some of them tricky and technical,
some of them useful for reducing very difficult calculations
to merely difficult ones. Missing too will be most of the
applications of GRT to problems of current interest. A use-
ful discussion is given, however, of that aspect of GRT that
stimulates the most interest and confusion: black holes.

I assume that the reader comes to this article with two
prerequisites: First, a familiarity is required with partial
differential equations and their application in physics, as
would certainly result from, say, a junior- or senior-level
course in electrodynamics. Experience with partial differ-
ential equations will be necessary for an appreciation of the
meaning of the GRT field equations; specific techniques
for solving such equations will not be of importance. The
second requirement is a comfortable familiarity with SRT,
with the Minkowski space-time description of SRT, and
with the usual SRT jargon (worldlines, proper time, four-
vectors, etc.). The conventions used in this article are out-
lined in Sec. I B.

This article is organized as follows: Section II presents a
heuristic overview of gravity and space-time geometry. The
physical ideas that are the basis of the theory are presented
without their full mathematical realizations. This section
serves as the motivation for the mathematical development
in the subsequent two sections. It can also stand alone as a
nonmathematical description of the structure of GRT. For
some readers the phenomenological picture given in Sec. I1
may be enough. Others I hope will be inspired to read fur-
ther in order to understand more quantitatively the ideas of
Sec. I1. The mathematical tools necessary for a quantitative
understanding are developed in Secs. IIl and IV. In Sec. IV
the field equations of GRT are presented and discussed,
bringing to fruition the seeds planted in Sec. II. Section V
contains a brief discussion of the weak field limit of GRT,
in which the connection is made with Newtonian gravity
and some features of gravitational waves are discussed. The
use of the field equations and the interpretation of the result
is exhibited in Sec. VI for the simplest but astrophysically
most important case of a spherically symmetric source. In
this section the Schwarzschild space-time geometry is de-
rived from the basic starting point of symmetry principles
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and the field equations, and is investigated up to and in-
cluding the nature of the Schwarzschild black hole.

B. Notations and conventions

In this article we use for the most part the conventions of
Misner et al.' except that we shall bother to include explic-
itly all factors of ¢ (speed of light) and G (universal gravita-
tional constant). To minimize the frustrations of unclear
notation, space is taken, here at the outset, to spell out most
of these conventions.

Some of the statements in this article will apply specifi-
cally to the four-dimensional space-time of relativity; oth-
ers will apply more generally to a space (with or without
timelike directions) of any (finite) dimension N. To help
with this distinction the term “space{time)” will be coined
to denote the general case; “space-time” will be reserved
for the specific N = 4 case with one timelike direction.

A point in N-dimensional space(time) is specified by the
values of N coordinates. Convenience will require the use of
several different schemes of naming coordinates. As an ex-
ample, spherical polar coordinates for ordinary N =3
space can be written (7,6,4 ) or (x",x%x?) or (x',x%,x%). The
general symbol for a coordinate will use a lower case Greek
letter, as in x#, with u taking any value (e.g., 1,2,3 or r,0,¢
in our example).

In the Minkowski space-time of SRT, measurementsin a
particular inertial reference frame are most simply de-
scribed with the Minkowski coordinates (¢,x,y,2) for that
frame. In this case a few notational peculiarities apply.
First, the numerical indices run from 0 to 3 and x° will
always have the meaning ct, that is, “speed of light X time-
like coordinate”. When it is necessary to single out the spa-
tial coordinates in space-time, Latin indices will be used, as
in x ‘. As examples of these conventions, we have, for Min-
kowski coordinates,

x* =any of x°x'x%*x?

=any of ct,x,,z,
x'=any of x'x*x?
=any of x,5,z.
Numerical indices are usually less clear than the others and
will usually be avoided in this tutorial article except for x°,
which is useful in place of ¢t.

When two different coordinate systems are used for the
same space(time) it is conventional to distinguish one by a
prime as in x " A familiar example is the Lorentz transfor-
mation, the transformation between two Minkowski co-

ordinate systems. In the simple case of relative motion at
speed v, purely in the x direction, the transformation is

X =y —uvt), t'=yt—uvx/c), (1.1)

yi=y’ zl=z’ '}/E(l —UZ/CZ)—I/Z.
The more general Lorentz transformation is more easily
given in the form

xH = SAK x”. (1.2)

The summation here is taken to be over all allowed values
of v. For the simple case of pure x motion the Lorentz
matrices include, for example,

A% = —wy/c.

An extremely useful and universal convenience is the
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“summation convention,” which simply says that when a
literal index is repeated in a term, both as a subscript and a
superscript, summation is assumed. Equation (1.2) can
then be written as

X = AR X7 (1.3)

In this equation v (index summed over) is called a dummy
index and ' (not summed over) a free index. The symbols
used for free and for dummy variables are, of course, arbi-
trary so that

A o = A a’BxB
means exactly the same as Eq. (1.3). The appearance in a
term of triply repeated index, or different free indices in
different terms of an equation, will not occur.

For two infinitesimally separated points (“‘events™) in

space-time, with coordinate separation dt, dx, dy, dz the
“interval” between them is defined by

(ds) = —c*dt ) + (dx)* + (dy) + (dz2)*.

We now introduce very important symbols 7, and 7"~
defined by

0 if us#v
?=n,=1—1 ifu=v=0 (1.4)
+1 fu=v=12 0r 3.
Note that #** and 7,, can be viewed as matrix inverses,
since (with the summation convention)

Nua™ =6, , (1.5)

where & is the Kronecker delta. With the 7, symbol the
expression for the interval can be written as

(ds)® =7, dx* dx”. (1.6)

The displacement between the two events is said to be spa-
celike, null (lightlike), or timelike, if (ds)® is, respectively,
positive, zero, or negative. For timelike displacements (ds)?
is often replaced by (d7)* = — (ds)*/c? where dr is the
“proper time” between the events, i.e., the clock time mea-
sured by an observer whose worldline passes through both
events.

The crucial property of Eq. (1.6) and Lorentz transfor-
mations is that the interval for a given pair of events, has
the same value when evaluated in any Minkowski coordi-
nate system [just as (ds)® = (dx)? + (dy)* has the same value
in any two-dimensional Cartesian coordinate system].

Vectors (and later, tensors) will be represented by bold-
face sans serif symbols. Of particular importance in SRT is
the four-velocity of a particle, a tangent to the particle’s
worldline, defined by

~ds

T dr’
where ds is the differential displacement along the particle
worldline and d7 the proper time required for this displace-

ment. The components of U in a Minkowski coordinate
system are
Uo=cd, propa® o
dr dr

For a Lorentz transformation the components of U (or any
vector) transform [see Eq. (1.3)] according to

Ur=A*U". (1.7)

The inner product (“dot product”) of two vectors in
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space-time is defined by
AB= —A°B° 4+ A'B'+ A’B2+ 4°B%>= — *4'B"’
+A*B*+ A’B* + A*B*,
With the #,,, symbol this is simply
AB=1,A4"B". (1.8)
Note that the dot product of the four-velocity with itself is
always

dx* dx* 2
y — = —c°. 1.9
* dr dr ¢ (19)

The idea of velocity-dependent mass, presented in some
treatments of SRT, will be avoided. The “mass” of a parti-
cle will always denote its rest mass, a fixed velocity inde-
pendent constant. The four-momentum of a particle is tak-
en as

p=mU . (1.10)

For photons U is not defined (since d= = 0 along a photon
path) but photon four-momentum remains a valid concept.
The components of particle four-momentum in a given
Minkowski coordinate system are

UU=19, 00" =9

0 dt
P =mc;=mc1/,

where i denotes a spatial index (1,2,3 or x,p,2) and y is the
Lorentz factor. It is often useful, in space-time, to retain the
concept of an ordinary three-dimensional spatial vector,
such as the ordinary velocity. When it is necessary to dis-
tinguish such three-dimensional vectors boldface roman
symbols will be used as in

_dax

v T em——
dt
for the ordinary three-velocity. With this notation we have,
for example,
2) —1/2

y={l-vv/c
PP=mcy, p=myv.

II. RELATIVITY, GRAVITY, AND GEOMETRY
A. SRT, forces, and gravity

There is a common misconception that SRT is adequate
only for particles moving at a constant velocity. This is
totally false; accelerations and forces except for gravity are
completely within the scope of SRT. We can best under-
stand what is so special about gravity by comparing it to a
simpler physical interaction, classical electrodynamics.
The example will be particularly clear if we can imagine
that physics developed drastically differently than it actu-
ally did. Imagine that we knew and believed SRT beyond
question, but had only very fragmentary knowledge of elec-
trodynamics.” In particular let us suppose that experiments
had been performed only with very slowly moving charges,
and with charge densities that varied only very slowly.
These experiments then would suggest that there was a
potential @, that was related to electric charge density p,
according to (esu units)

VP, = —4np, , (2.1)
and that a particle of charge g experienced a force associat-
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ed with @,, given by

F=2
dt

(The boldface type here denotes ordinary three-vectors.)

Now SRT puts severe constraints on any viable theory of
a physical interaction: the interaction must not allow us to
distinguish one inertial reference frame (i.e., one Min-
kowski coordinate system) from another. That this require-
ment is violated by the above theory is most immediately
evident in Eq. (2.1) that says that a change in p, instanta-
neously results in a change in @, everywhere. In SRT, due
to the relativity of simultaneity, “instantaneous” is not an
absolute judgment. Information can be propagated instan-
taneously only in one inertial frame so Eq. (2.1) can apply
only in one inertial frame. The theory, then, distinguishes
one frame from all others and hence violates SRT. This
difficulty can easily be patched up by replacing Eq. (2.1)
with

= —¢Vvo,. (2.2)

FIo
! =[P, = — 4np, , (2.3)

¢t ot

Vi, —

according to which changes in @, propagate at the speed of
light. The extra time derivative term, we could argue, is just
too small to have been noted in any experiments
performed.

This result is still not acceptable if we consider @, tobe a
scalar field, i.e., a field measured in all inertial reference
frames to have the same value at any particular space-time
point. If @, is a scalar then it is straightforward to show
that the left-hand side of Eq. (2.3) is a scalar. What about
the right-hand side? Electric charge is a scalar, i.e., mea-
sured to be the same in all frames. (See Ref. 2 for an argu-
ment for this.) But charge density cannot be a scalar. Let a
group of charges, with total charge Q, be at rest in frame §
and occupy a volume ¥V in that frame. In a relatively mov-
ing frame S’ the volume occupied will be smaller due to
Lorentz contraction: V' = ¥ /y where y is the Lorentz fac-
tor. Since charge is a scalar Q' = Q and hence the charge
density measured in .S’ is

p.=Q V' =Q/V/y)=17p. . (2.4)

The proper treatment of charge density in fact is to consid-
er it as a part of a vector, the charge-current four-vector J,
with components as measured in any particular inertial
frame given by

Ji=ith component of current
density (i = x, y, 2).

(Note that J® = ¢ if J! = 0.)

We are forced to conclude that the right-hand side of Eq.
(2.3) is a component of a vector. But the principles of SRT
do not allow us to accept an equation of the form *scalar

= component of a vector.” Such an equation would make

different predictions, in different coordinate systems,
about absolute things. There is only one way out of this
dilemma. Both @, and p, must be the “time components”
of vectors and Eq. (2.3) is only a part of the description of
the relationship between those vectors. More specifically
we must construct a four-vector A such that 4°=®,.
Equation (2.3) then reads

04°= —4me~J° (2.6)

and it must only be one of four such equations that can be
summarized as® ‘

o —
I =cp. (2.5)
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CPA# = —4mc™T", (2.7)

We should now play a similar game with the force equa-
tion (2.2). We must replace it with an equation that tells us,
in terms of A, how to compute dp/dr and that, for slow
particles (the only kind our imaginary experimentalists
have studied), reduces to Eq. (2.2). A first halting attempt at
the spatial components (i = x, y,z) of this equation might be

i _ ¢ d 40

dr c :9;( )
This particular choice does not quite work; it turns out, for
example, that it predicts changing particle mass. Rather
than delaying a consideration of gravity by playing this
game out in detail let us just write down the well-known
answer:

(2.8)

ﬂ:ﬂ(a‘i_%)uv, (2.9)
dr ¢\ dx* x"
where

Pu=Tue P°y Au=1,.4°,
and U is the four-velocity of the charged particle.

The result of this intellectual exercise is rather impres-
sive. We have started from a very sketchy description of a
physical law, based on very limited experimental data, and
by satisfying the requirements of SRT have arrived at a
much richer and more complicated theory, one that pre-
dicts new observable phenomena (magnetic forces, etc.) for
which, according to the suppositions of our intellectual ex-
ercise, there was no experimental evidence. There is, how-
ever, no alternative. If relativistic ideas are correct the sim-
ple original theory cannot be correct.

The above exercise is in no way a summary of the history
of the development of electrodynamics. Because large elec-
tric currents can be generated easily, magnetic forces were
known to be part of electrical phenomena rather early, and
it was electrodynamics that led to SRT rather than the
other way around. The situation for gravity early in this
century was drastically different and remains so even now.
It is not possible to generate large mass currents and to do
easily the experiments that reveal the relativistic nature of
gravitation. Nothing makes this clearer than the fact that
Newtonian gravity theory, a rather close analog of electro-
statics, still suffices for almost all applications. For gravity
then we would seem to be in a position to repeat our intel-
lectual exercise in earnest. This after all (not curved space-
time!) seems the common sense approach: to construct a
theory of gravity compatible with SRT.

Our starting point is almost the same as in the case of
electrodynamics. We have fragmentary experimental evi-
dence about a physical interaction and the evidence sug-
gests a potential @, satisfying

Vb = 47Gp (2.10)

(where p is the mass density) and a force on a particle of
mass m given by

F= —mVo. (2.11)

These two equations constitute the classical Newtonian
theory. They are not, of course, compatible with SRT (e.g.,
instantaneous propagation of changes in @ ) but the equa-
tions are so strikingly similar to those of electrostatics that
the path to modifying the theory seems clear. We will, how-
ever, run into two obstacles on this path: a minor one that
introduces some technical complications, and a major one
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that suggests a new conceptual framework for gravity.

To see the minor problem let us investigate p in Eq. (2.10)
as we investigated charge density p, in Eq. (2.4). The source
of the Newtonian gravitational field is

p = “mass”/volume.

But it is unclear in Newtonian theory what “mass” is to be
included. It could be only rest mass, e.g., the sum of the rest
masses of the fundamental particles making up a star. It
might, on the other hand, mean “mass-energy,” e.g., the
sum of ¢~ p° for all the particles, including photons, in the
star; in this case kinetic energy, radiation energy, etc. con-
tribute as well as rest mass. The difference between the two
is tiny for ordinary matter and ordinary astrophysical ob-
jects. We shall accept for now and justify presently that it
must be the latter choice, “mass-energy,” that is the source
of @. It is better, then, to write p as

p = ¢~ *(sum of all mass-energy)/volume . (2.12)

We can now follow the same pattern of argument that
led to Eq. (2.4). Let a group of particles be at rest in frame §
and occupy volume ¥ as measured in that frame. Since the
particles are all at rest only their rest mass contributes to
mass-energy and hence the mass-energy is the sum ¢Zm;
of the particle rest masses, and

p=>m/V.

In another frame S’ a particle of rest mass m; will have
energy ym,c* and the particles will occupy a volume
V' =V /y. The source of the gravitational field in this
frame will then be '

p'=2m,~7//V’=y2(zm,-/V)=rzp.

What are we to do with this? The 7* cannot appear in the
Lorentz transformation of a scalar or of vector compo-
nents, so what sort of mathematical object is p? The answer
is to treat p as a component of a second-rank tensor and, as
required by SRT, to treat @ also as the component of a
second-rank tensor, and to continue with arguments simi-
lar to those we used for electrodynamics (e.g., replace V2 by
0% etc.). To work out the details would be distractingly
technical here because tensors have yet to be discussed or
introduced. At this time it is sufficient for us to know sim-
ply that the details can be filled in and that it seems we can
arrive at a theory that differs from electrodynamics in com-
plexity but not in its conceptual framework (i.e., there is no
hint of “‘curved space-time”). This theory, in fact, is simply
the linearized gravitational theory to be described in Sec.
V.

Before we look at the major problem with such a theory
it will be necessary to reconsider why mass-energy rather
than mass was used in Eq. (2.12). If we change this interpre-
tation the mathematical form of our theory changes: rest
mass is a scalar (like electric charge) so Eq. (2.13) is replaced
by p' = ¥ p, and we no longer need to deal with tensors.
The decision on the meaning of p will be crucial not only to
the resolution of the ambiguity already mentioned, but also
to the issue of the nonlinear nature of gravity.

For our purposes we shall need to consider an object at
rest, say a small container of gas, and to distinguish three
operationally defined types of mass for it: First is “inertial
mass” M, the resistance to acceleration. This is the usual
mass assigned to the object in SRT. It has contributions

(2.13)
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from all the forms of mass-energy within the object. The
container of gas, for example, certainly has a contribution
to its inertial mass due to the kinetic energy of the thermal
motion of the gas. A second type of mass is ““passive gravi-
tational mass” M. This is the mass that determines how
much pull gravity has on the object; it is the mass that
multiplies V& in Eq. (2.11). The third type of mass is “ac-
tive gravitational mass” M, the mass that generates the
gravitational field. The density of this type of mass is the
“p” that is needed in Eq. (2.10).

An experimental result that is of fundamental impor-
tance to gravity theory must now be introduced: All ob-
jects, whether containers of gas, rocks or feathers, beggars
or kings, experience the same acceleration in a gravitation-
al field, independent of their internal constitution. This ba-
sic fact, called the “weak equivalence principle,” has been
experimentally verified* with ever increasing precision by
scientists, starting with Galileo who around 1610 con-
firmed it to one part in 10°. The weak equivalence principle
tells us that in a gravitational field the force on an object
must always be proportional the object’s resistance to ac-
celeration, and therefore that the ratio M, /M, must be the
same for every object. Convenience dictates choosing con-
stants (e.g., the gravitational constant G ) to make this ratio
unity.

To justify Eq. (2.12) we must show that M, is the same as
M, or equivalently M. Many interesting thought experi-
ments can be performed to illustrate this point but we shall
satisfy ourselves here with a simple one. Let us imagine that
two containers 1 and 2, of the type we have been discussing,
are connected by a rigid rod as in Fig. 1. Each container has
N particles of mass m and the particles are at rest as if they
constituted a zero temperature gas. Let us suppose that the
whole contraption (containers, rod, particles) is initially at
rest. The gravitational force on container 1 caused by 2 is
equal and opposite to that on 2 due to 1, so the net force on
the system is zero. Suppose now that the rest mass of a
single particle in container 2 is completely converted to
energy and that this energy shows up as thermal motions of
the remaining particles in 2. The rest mass content of con-
tainer 2 decreases but no energy enters or leaves container 2

| 2
XX ' X
-—p h
F, 'YX oo 0 F,
| 2
’ooo ’\._
F, eeoeo "'I‘ F,

Fig. 1. Consequence of gravity generated only by rest mass. Initially the
particles in both containers 1 and 2 are at rest. The force F, on container 1,
due to container 2 is balanced by F,. One of the particles in container 2 is
then completely converted to kinetic energy of the remaining particles.
According to the weak equivalence principle, the passive gravitational
mass in the containers is unchanged so if the active gravitational mass of
container 2 decreases, F, will be less than F, and the system will accelerate
to the left.
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50, SRT tell us, the inertial mass of container 2 is un-
changed. If active gravitational mass were simply the sum
of constituent rest masses then the gravitational pull of 2 on
1 would decrease while the gravitational pull of 1 on 2
would remain the same. The system would then begin to
accelerate to the left although no external force is acting on
it! Unless one is willing to accept this there is no alternative
but to conclude that the active gravitational mass of an
object is the same as its inertial mass and passive gravita-
tional mass.

What we are discovering here is an aspect of the univer-
sal character of gravity. All forms of energy contribute not
only to the inertial and passive gravitational mass but also
to the generation of the gravitational field. This tells us that
Eq. (2.13) is indeed correct and that a tensor description is
needed. This universality of gravity, however, raises also a
disturbing question that proves the downfall of a “simple”
tensor theory of gravity. The disturbing question is this: If
all forms of energy are to be included on the right-hand side
of Eq. (2.10}—or its tensor equivalent—how are we to in-
clude gravitational energy? Gravitational energy is certain-
ly a real and not very subtle thing. Hydroelectric power
plants would not conserve energy if there were no gravita-
tional energy associated with water on the high side of a
dam. If we do not include such energy as part of the total
mass-energy of a gravitational source we will arrive at the
same sort of unacceptable possibilities we encountered in
our previous thought experiment. (Example: replace ther-
mal energy in container 2 by gravitational binding energy
and consider the consequences.) We must include gravita-
tional energy as part of p. Let us not worry about the tech-
nical details of how we calculate gravitational energy from
the gravitational field tensor but rather let us note the es-
sential dilemma we face: We must know p to calculate the
gravitational field; we need to know the gravitational field
to calculate gravitational energy; but we must know the
gravitational field energy to know p.

The mathematics of gravity, we see, is nonlinear since
gravity itself is a source of gravity. No such difficulty arises,
for example, in classical electrodynamics since the electro-
magnetic field is not itself a source of an electromagnetic
field. Although the nonlinearity of gravity is a rather un-
welcome complication it would not seem to present insur-
mountable difficulties. We might try, for example, to solve
gravitational problems by an iterative procedure since
gravitational energy is usually small compared to, say, rest
mass energy. (Example: The rest mass energy of the sun in
on the order of 10°* ergs while its gravitational binding
energy is less than 10* ergs.) In an iterative procedure we
would ignore gravitational energy in p, solve for the gravi-
tational field, compute the resulting gravitational energy,
use it to find an improved estimate of p, solve for an im-
proved estimate of the gravitational field, etc., etc.

Such a procedure can be and has been carried out’ to all
orders of iteration. A meaningfully detailed description of
the results of this procedure would be out of place here, but
the results are far too interesting not at least to sketch out:
A gravitational field tensor is found from a highly nonlin-
ear field equation. The gravitational field is not only gener-
ated by all forms of mass-energy but it affects all forms of
mass-energy. In particular, any clock or meter stick, or any
device for measuring spatial distances and time differences
is necessarily and unavoidably affected by the gravitational
field (even in the linearized approximation to this theory).
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Any attempt to demonstrate by measurement that the space-
time of events has the SR T geometry will fail if gravitational
fields are present. The relationship of distances and time
differences will be found by measurement to be more com-
plicated than that of Eq. (1.6).

This theory is identical in content to Einstein’s GRT but
somewhat different in viewpoint. In the more common.in-
terpretation of GRT the SRT space-time geometry has no
place. Since flat space-time has no direct relationship to
measurement, it is considered irrelevant. The “real” geo-
metrical structure of space-time is taken to be that mea-
sured by rods and clocks.

Einstein did not follow the above procedure of starting
with a more or less standard field theory in the context of
SRT. He started with space-time curvature as an a priori
concept and so shall we.

B. Geometry

A space(time) is said to have a metric geometry if we have
a way of computing a measure (ds)® of the separation of
nearby points. If x and y are the coordinates in a two-di-
mensional space, a formula for (ds)* might be, for example,

(ds)? = (dx)* + (dy)*. (2.14)

We immediately recognize this as flat two-dimensional
space described in Cartesian coordinates, just as we
recognize

(ds)? = (dx)* + (dy)® + (dz)}

as three-dimensional flat space and
(ds)? = — cHdt)* + (dx)* + (dy)* + (dz)? (2.15)

as the Minkowski space-time of SRT. Formulas such as
these are called the line element or the metric formula.

The general formula for (ds)? is written (with the summa-
tion convention of Sec. I B) as

(ds)* =g, dx*dx". (2.16)

The “metric coefficients” g, are in general not constants
[as in Egs. (2.14)-(2.16)] but are functions of position. We
shall always assume that the metric is symmetric,5i.e., that
8. = 8, - Some examples of metric formulas, and of nota-
tion [e.g., suppressed parentheses on (dx #)?] are
ds* = dx* + dy?,
8 =8y =1 8,=0
Euclidean two-space ds* =dr’ + r*d¢?,

in polar coordinates g, =1, g, =r, g,=0;

(2.17b)

Euclidean two-space

in Cartesians (2.17a)

ds* = a’(d6” + sin*0 dg ),
gﬂﬂ ___02, g¢¢ ___a2 Sinze, g9¢ = 0;
(2.17¢)

a8 = —dt* +dx* + dy* + dP,
Minkowski coordinates 8uv = Muvs

Surface of a sphere
of radius ¢

SRT space-time

[see Eq. (16)] (2.174)
Schwarzschild space-time ds?= — (1 — r/ric? dt?
+(L=r,/r) P
with parameter 7, + rF(d6? + sin*0 dg 2),
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(see Sec. VI) 8= — (Ll —rg/1),

& =(1=rg /N,
890 = r2, gM = r2 Sinze,

g, =0 if u#v.
(2.17¢)

In addition to the set of metric coefficients g,,, , it is use-
ful and traditional to define a second set of indexed quanti-
ties g“* by the requirement [cf. Eq. (1.5)]

1 ifu=v

i

A simple way of computing g#” is to consider the metric
coefficients g,, arranged in a matrix. The quantities g*”
than can be found, according to Eq. (2.18), as elements of
the matrix inverse. If the metric is “diagonal” (g,, = 0 if
[ #v), as are all the examples in Eq. (2.17), this is particu-
larly simple. The result for flat two-space in polar coordi-
nates is, for example,

grr= 1’ g09=’.—2’
If we can find coordinates (x, y,z,w,. . .) in which the met-
ric formula takes the simple form
ds’= +dx*+dy* +dz? +dw* + - - -, (2.19)

the space(time) and the coordinates are said to be “flat.”
The space(time) is said to be Euclidean if all the signs are
plus (or all minus) and pseudo-Euclidean {or a space-time)
if there are some pluses and some minuses. Flat coordinates
are not unique. A transformation of coordinates of the type

(2.20)

(2.18)

gr0=g9r____0'

x' =xcosa +ysinag, y = — xsina + y cosa,
for example, changes Eq. (2.17a) to
dx* =dx"? +dy",

so that both x, y and x’, ' are flat coordinates. As another
example, the transformations among different sets of Min-
kowski (flat) coordinates in space-time are the Lorentz
transformations. Coordinates that are not flat are often
called curvilinear. A space(time) is “‘curved” if no coordi-
nates exist in which the metric formula has the form in Eq.
(2.19); any coordinate system in a curved space(time) is
curvilinear.

The reference to coordinate choice in the distinction be-
tween flat and curved space(time) raises the important
question of what coordinates “mean.” It may appear that
we must specify what the coordinates “mean” before we
write down a metric formula. (We know, for example, what
spherical polar coordinates “mean” visually in ordinary
three-dimensional space.) This is not true. Coordinates by
themselves are only labels and have no geometric meaning
until we know the distance structure associated with them.
In the geometry of Eq. (2.17¢), as an example, all points
with the same 7 and ¢ coordinate (dr = df = 0) have the
same distance structure as that of the surface of a sphere of
radius 7. We see then that the geometry must be spherically
symmetric and that the r coordinate is related to the size of
the spherical surfaces in the geometry. In this case, as in all
cases, the metric formula itself defines the geometric mean-
ing of the coordinates.

Very different looking metric formulas may correspond
to the same space(time) described in different coordinates.
This is the case if a change of coordinates transforms one
metric formula into another. A familiar example is the
transformation
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r=(*+p)""% ¢ =tan"'(y/x),
which changes the metric formula of Eq. (2.17b) to that of

Eq. (2.17a). A less familiar example is provided by the exot-
ic appearing metric formula

ds’ = —dv* + vV du® + dy* +d7*. {2.21)

New coordinates ¢,x may be introduced in place of v,u by
the transformation

v=[(ct)* —x?]'%, u=tanh " '(x/ct).
When the expressions

_ ctdt—xdx y — C1ax —cxdt
[cztz___lel/z ’ [c2t2—x2]”2

are used in (Eq. 2.21) the result is
ds’ = —c*dt? + dx* +dy* + d2?,

so that Eq. (2.21) is simply Minkowski space-time de-
scribed in unusual curvilinear coordinates, just as Eq.
(2.17b) is flat two-dimensional space in somewhat less un-
usual coordinates.

Clearly, coordinate transformations allow us consider-
able freedom to change the appearance of a metric formula.
But they do not allow complete freedom. No matter how
hard we search we will never find a change of coordinates
that reduces Eq. (2.17¢) to (2.17a). This is completely con-
sistent with our intuition that the two-dimensional geome-
try—the relationship of distances—on the surface of a
sphere is genuinely different from the flat two-dimensional
geometry of a plane. The lesson to be learned from this is
that the metric formula contains a confusing mixture of
information both about the coordinates in which the for-
mula is presented, and about the actual geometry it
describes.

In Sec. IV we will develop the mathematics of curvature
and will find, among other things, that we need not explic-
itly consider all possible coordinate transformations to
conclude that Eq. (2.17¢), for example, describes a curved
space. For now let us just note that there must be quantita-
tive measures of the curvature of a space(time). Suppose
that Eq. (2.17c) represents the surface of the Earth
(a = Earth radius, 6 = colatitude, ¢ = longitude) and
imagine the Earth to be a perfect sphere, bereft of all its
interesting topographic features. An engineer designing a
pipeline from Alaska to Los Angeles will make a terribly
costly mistake if he ignores the curvature of the Earth’s
surface. On the other hand, a man laying out a parking lot
can easily afford to forget the Earth’s curvature. It is all a
matter of scale. A small enough region of a curved geome-
try is essentially flat, but small compared to what? There
must be a length scale—the Earth radius in our example—
that determines the magnitude of curvature effects. The
smaller this length scale is, the more the geometry is
curved. We shall, for now, be very sloppy and call this
length scale the “radius of curvature” although we shall see
in Sec. IV that it is an oversimplification to characterize
curvature by a single number.

Since, on a small scale, any geometry looks flat (except
perhaps at a pathological point) it seems reasonable that we
should be able to introduce coordinates that on a small
scale are almost fiat. Specifically, at any (nonpathological)
point P we can choose coordinates in which

+1
g,uv= O
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dv

ifu=wv

t P 2.22
if p#v 2 (2.222]

and
0g,,/0x*=0 at P. (2.22b)

These coordinates will be called “locally flat,” or LF, co-
ordinates at point P. With LF coordinates at some point P
of a curved space-time (e.g., Eq. [2.17¢]) the metric coeffi-
cients at that point can be put in the form

gyv = nuv + o [(xﬂ - x;)2] ’ (2'23)

where x * — x§ is the coordinates separation from the cho-
sen point P. The proportionality constants in the
O ([x* — x3]%) correction will be related to the radius of
curvature of the space-time in the neighborhood of P.

As another, more specific, example we examine Eq.
{2.17¢) with point P taken to be 8 =7/2, ¢ =0. If we
choose

x=al@—n/2), y=ad,

so that Pis at x = 0, y = 0, the metric formula becomes
ds® = dx* + cos*(x/a)dy’

and therefore x, y are LF coordinates, since
ds’ = dx* + dy* + O[(x/a)*,(y/a)] . (2.24)

LF coordinates at a point are not unique. We could, for
example, perform the linear transformation of Eq. (2.20)
for any rotational angle a and thereby get a whole class of
coordinate systems satisfying Eq. (2.24). Similarly, in
space-time a Lorentz transformation of a coordinate sys-
tem that satisfies Eq. (2.22) produces another coordinate
systems that also satisfies it. In flat space(time) such linear
transformations (rotations, Lorentz) are the unique trans-
formations that change one set of flat coordinates to an-
other. Here, however, we are dealing with curved space-
(time)s and with the less stringent requirement that
coordinates be Jocally flat. This means that nonlinear trans-
formations do not ruin the LF property of a coordinate
system if they affect the coordinates weakly enough near P.
For example, the transformation

x=x +(yf/a, y=y +&fy/a
defines new coordinates x’, y’ which also satisfy Eq. (2.24).
In general, transformations of the type

X =x+ 0 [(x — x3F]

do not change the LF nature of coordinates.

The actual use of LF coordinates is almost always too
tedius to be of use in calculations, but the concept of LF
coordinates will be of crucial importance. They will be im-
portant to geometric considerations because we shall be
interested in establishing certain “absolute” statements
about geometric quantities. For such statements we shall
know in advance that their truth or falsity is independent of
coordinate system. We can then allow ourselves the conve-
nience of proving, or disproving, these statements in the
most convenient coordinates, usually LF coordinates. LF
coordinates will be important to physical considerations in
space-time because they will be the lucally Minkowskian
coordinates [Eq. (2.22)] corresponding to a local inertial
reference frame.

The final point to be made here about geometry concerns
a special class of curves called geodesics. In a flat space-
(time) there exist special coordinates, the flat coordinates.
A straight line in a flat space(time) is simply a linear rela-
tionship amongst the flat coordinates, which can be put in
the parameterized form

(2.25)
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X = aho 4 b*, (2.26)

where o is the parameter along the curve and a”, b* are
constants. In a curved space-time there is no preferred set
of coordinates—no flat coordinates—in which Eq. (2.26)
can be used. Rather, the concept of a straight line is re-
placed by that of a geodesic, a curve that is locally “as
straight as possible.” More specifically, let Pbe a point on a
geodesic, and let x“ be LF coordinates at P. In the neigh-
borhood of P the geodesic can be put in the form

x*=a'oc+b*+ O [(o —0p)], (2.27)

where 0 = o, at point P. The sloppiness in this equation
duetotheO [(o — o,)*] term is unavoidable. If we demand
that this term be zero in one LF coordinate system at P, an
allowed transformation [Eq. (2.25)] will generate such a
term in another LF system. Equation (2.27) then is the best
we can do; it describes a curve that at point P is as straight
as the coordinates are flat. A geodesic is, in this sense, as
straight as possible at each of its points. In this sense, for
example, it turns out that the meridians on the Earth (ideal-
ized as a perfect sphere) are geodesics, while the lines of
latitude are not. See Fig. 2.

The development of the mathematical description of
geodesics from this point of view requires a few new math-
ematical tools and symbols, and is put off until Sec. IV. For
now we will have to make do with a less satisfactory con-
ceptual starting point that turns out to be equivalent: geo-
desics, like straight lines in flat space(time), are the curves
of extremal (minimum or maximum) length between two
points.” Because this criterion for a geodesic is secondary
the mathematical development here will only be sketched.

For definiteness (to eliminate ambiguities of sign and
symbols) let us focus on the case of timelike curves between
two points, P, and P, in a curved space-time. Such a curve
can be specified by giving the functions x#(4 ), where A is a
parameter that runs from O at P, to 1 at P,. Along this
curve proper time increases according to

N . N dx* dx"\172
dr =(—c7’%,, dx*dx")'? = (—C 8 ETE{) dA
=FdAi, (2.28)
and the total proper time is
1
T= j Fdi. (2.29)
(0]

T .

Fig. 2. Geodesic and nongeodesic curves on the surface of the Earth (as-
sumed to be a perfect sphere). The meridians on the Earth are geodesics
but the lines of latitude, except for the equator, are not. When a small
region of the Earth’s surface is examined it appears essentially flat. If this
region is plotted on a graph made with locally flat coordinates (see text)
the meridians appear almost straight. If the Earth radius is @, and the
region is of size L €a, the tangent vectors to the meridians bend by an angle
of order (L /a)’ while the tangent vectors to the lines of latitude bend by a
much larger angle, of order (L /a).
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Since the proper time for a timelike curve is what we mean
by its length, the integral in Eq. (2.29) must be extremized.
With F considered as a functional of the functions x*(4 )
and the derivatives dx*/dA, the necessary condition for
Eq. (2.29) to be extremal is found by the usual Euler-La-
grange variation, familiar from Lagrangian mechanics,

(o) _or
dA\ddx>/dA)]  Ix*

The result is a set of differential equations for the functions
x*A):

g A% 1 dxdd (c?gga % 3gﬁv)
“eTIA? 2 dA dA \ax | axP  ox°
dx* dF
—g X g8 2.30
S " M (2.30

The curve x#(A ) can be parametrized in many different
ways, that is, A can be taken to be any parameter along the
curve. The simplest choice for A is simply 7, proper time
along the curve. Since F = d7/dA in general, F = 1 for this
choice and the right-hand side of Eq. (2.30) vanishes leav-
ing us with

d* 1 dx*dx’ (agga %o agpv)
dr* 2 dr dr \gx* xf ox°

=0,

(2.31)

which is the equation for a timelike goedesic, in its more-or-
less common form. If d7 is replaced by ds, Eq. (2.31) is the
equation for a spacelike geodesic parameterized with arc
length. Equation (2.31) also describes null (i.e., lightlike)
geodesics if 7 is replaced by a parameter appropriate to a
null curve.

Notice that Eq. (2.31) is, at least, compatible with our
local viewpoint. In an LF coordinate system at point P the
partial derivatives of the metric coefficients vanish at P, so
Eq. (2.31) just says

d 2xa

dr’
that is, the curve is locally straight in LF coordinates. That,
of course, does not tell us why the partial derivatives of 8.

must be arranged in the manner of Eq. (2.31) to describe a
geodesic in non-LF coordinates.

g;nz

=0,

C. Gravity and geometry

We come now to an important question: Why should we
suspect a priori that gravity has anything to do with geome-
try? The guiding principle here is the weak equivalence
principle. Let a point particle be “free” in the sense that the
only influence on its motion is gravity. (We can say the
particle is force-free since we shall not view gravity as a
force.) At some moment—call it # = O—we can specify the
motion of the particle, for example, by specifying its veloc-
ity and position in some inertial reference frame. We are
told by the weak equivalence principle that the subsequent
motion of the particle is independent of the nature (mass,
charge, etc.) of the particle. In other words, the dynamics of
the free particle is completely specified by a single worldline.
In Fig. 3(a) this is heuristically shown, on a space-time dia-
gram, for a gravitational acceleration in the + x direction.
Figure 3(b) shows the very different situation for charged
particles in an electric field. For electromagnetic interac-
tions there is no weak equivalence principle; particles of
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Fig. 3. Particle dynamics described by worldlines. In (a) a gravitational
acceleration acts to the right and a single worldline suffices to show the
effect on any particle starting from rest. In (b) an electric vector points to
the right; the worldline of a particle starting from rest depends on the
particle’s electric charge ¢. A set of worldlines for different initial veloci-
ties summarizes, in {c), the dynamical effects of a gravitational accelera-
tion acting to the right.

different charge follow different worldlines. The complete
description of the dynamical effects of gravity at a point in
space-time may be considered to be summarized by all pos-
sible free-particle worldlines, that is, by the worldlines cor-
responding to all initial velocities at the point [Fig. 3(c)].

This is an interesting and suggestive graphical device for
picturing gravity, but it is not a geometrical one unless we
can find some geometrical way of determining the special
world lines. In the gravity-free case of Minkowski space-
time we already know the answer: The “special” worldlines
are the straight timelike worldlines; unaccelerated parti-
cles move with constant velocity. To find the geometrical
basis of these curves in the presence of gravity we return yet
again to the weak equivalence principle. According to this
principle it would seem that we can Jlocally banish gravity
from physics by using a freely falling reference frame. The
standard example of this is a freely falling elevator. Since
the elevator and all the objects in it experience the same
gravitational acceleration they all fall together without rel-
ative acceleration. An absent-minded physicist trapped in
such a falling elevator would observe all objects in the ele-
vator moving at a constant velocity with respect to the ele-
vator, and might conclude that he is in outer space, away
from all gravitational influences. For this physicist the free-
ly falling frame of the elevator would seem to be a gravity-
free inertial reference frame. A change of reference frame
has eliminated gravity. Gravity must therefore not be a real
force but a pseudoforce like centrifugal force, an apparent
force that arises in a noninertial reference frame. Centrifu-
gal forces appear in rotating frames and gravity forces ap-
pear in frames that are not freely falling.

Indeed it is true that the most common aspect of gravity,
the weight force, vanishes in a freely falling frame and we
will consider weight to be a pseudoforce, not a real gravita-
tional force.® But it is not true that all effects of gravity
disappear in the freely falling frame. If the trapped physi-
cist is painstaking enough he will, at least in principle, be
able to detect some gravitational effects. He will find, for
example, that there is a miniscule relative acceleration
(typical magnitude ~4 X 10™* cm/sec?) between his eye-
glasses, floating near the top of the elevator compartment,
and his pen, near the bottom. In the standard viewpoint,
based on a reference frame fixed with respect to the Earth,
this is to be expected because the pen, slightly closer to the
center of the Earth, experiences a greater gravitational ac-
celeration than the eyeglasses. Because the gravitational
field of the Earth is not uniform, gravity cannot be com-
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pletely banished; there are then real gravitational forces (in
contrast to the weight pseudoforce). These real aspects of
gravity are often called tidal forces since it is the nonuni-
formity of the gravitational fields of spherical bodies (the
sun and the moon) that drives the tides.

The effects produced by real (i.e., tidal) gravitational

forces in the falling elevator will depend on the size of the
elevator; the bigger the elevator is the larger will be the
relative acceleration of objects at distant corners. If the
elevator is small enough these effects may be judged to be
unimportant and the elevator may be considered a good
approximation to a gravity-free inertial frame. We shall in
general call such a frame a “locally inertial frame.”
In the locally inertial frame gravity-free SRT only approxi-
mately applies. We can try to construct flat coordinates x #
for this frame with the usual construction techniques (e.g.,
perfect rigid rods, perfect clocks, light beams, etc.) but we
know that the result will fall short of perfection. We cannot
construct coordinates x# in which a// free-particle world-
lines have the straight-line form of Eq. (2.26). If we could,
there would be no relative accelerations of any particles,
and no effects whatever of gravity. The best we can do is to
construct coordinates in which all free particles have no
acceleration at a single point, call it . For these coordi-
nates it is fairly clear that all worldlines will have the form
of Eq. (2.27), since this requires only that d *x*/do” = 0 at
P

The implications of the above considerations should be
clear. Space-time is to be considered as curved. Small re-
gions of space-time described in LF coordinates appear lo-
cally flat, so these LF coordinates must correspond to the
locally inertial freely falling frames. Free particles follow
worldlines that are locally straight, in the sense of Eq.
(2.27), in these coordinates, hence free-particle worldlines
must be geodesics. In its most succinct form the union of
geometry and gravity is Space-time is curved, free particles
Jollow geodesics.

We now have, at least conceptually, half of the structure
of GRT. We have replaced the Newtonian ‘““force”
equation

F= —mV®
by the dynamical principle
force-free worldline = geodesic. (2.32)

Even with this much of the theory some answers are clari-
fied. It is often asked, for example, whether the bending of
the path of starlight passing near the sun makes a statement
about light having an effective mass. In our picture of grav-
ity, and in GRT, the question is irrelevant; light simply
follows a null geodesic and in the neighborhood of the sun
geodesics, null and otherwise, are bent. To answer other
questions, however, we need the other half of the theory:
What determines space-time curvature?

In the Newtonian theory the “‘source equation” relating
the gravitational field to its sources is simply

VP =4rGp . (2.33j

For our geometric gravity theory we would want to replace
this by something like

curvature = source of gravity (mass-energy density,
etc.) . (2.34)

The discovery of a mathematical representation of the left-
hand side of Eq. (2.34) will be the task of Sec. IV, but some
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preliminary observations can already be made. Just as Eq.
(2.33) tells us that V>@ vanishes outside a gravitating
source, Eq. (2.34) seems to require that curvature vanish
outside a source. This would imply, for example, that there
is no gravitational influence near the Earth due to the sun, a
conclusion in striking disagreement with observation. In
Newtonian theory this problem is avoided in that there are
two “measures” of gravity: V@, which couples to the
source of gravity, and V&, which describes the effect of
gravity. Clearly V& needn’t vanish everywhere that V>®
vanishes, so that gravitational effects extend outside of
gravitating sources. Similarly in a space-time description of
gravity there must be two measures of curvature. The ana-
log of V&, the measure of curvature appropriate to describ-
ing the effects of gravity, is called Riemann curvature. Just
as V@ = 0 means there is no gravity (@ = constant) the
vanishing of Riemann curvature guarantees that there are
no gravitational effects and that there is no curvature, i.e.,
space-time is flat. The analog of V?®, the curvature we
want for the left-hand side of Eq. (2.34), is called Ricci
curvature. Most important, the Ricci curvature can vanish
without the vanishing of the Riemann curvature, so there
can be gravity outside gravitating sources.’ The structure
of relativistic gravitation theories then can be summarized
as

dynamics Riemann
. an
{(worldlines of governed by , (2.35)
. curvature
particles, photons)
Ricci curvature = gravitational sources. (2.36)

These equations apply not only to Einstein’s gravitation
theory, general relativity, but also to most alternative the-
ories—other so-called metric theories of gravity. The dif-
ferences among the theories lie in the details of Eq. (2.36).
Einstein’s theory, GRT, is in a sense the simplest of these
theories since the sources of the Ricci curvature involve
only nongravitational energy density, momentum flux, etc.
In most alternative theories, extra nongeometric “gravita-
tional fields™ are proposed that have no effect in Eq. (2.35)
but that enter into the right-hand side of Eq. (2.36).

It remains only to develop the mathematics necessary to
find the quantitative meaning of the words in Egs. (2.35)
and (2.36).

III. VECTORS AND TENSORS IN CURVED SPACE-
TIME

A. Vectors and bases

A vector in flat space(time) offers no conceptual chal-
lenge. It is simply a displacement, a directed straight line
segment from one point to another. In a curved space or
space-time such a concept has no clear meaning since there
are no straight lines. We can salvage, however, the concept
for a differential displacement ds, the displacement be-
tween two infinitesimally separated points. Heuristically,
such a differential displacement is too small to care that the
geometry is curved. (See Fig. 4.) Now if ds is a vector at
some point we can do with it all the things we usually do
with vectors in linear algebra. At a given point, in an N-
dimensional space(time) differential displacement vectors
form an N-dimensional vector space. This is, as usual, par-
ticularly clear from the locally flat viewpoint. There is in
JSact nothing about the vector algebra at a point that depends
on whether the space(time) is curved or flat. We can thus add
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Fig. 4. Finite displacement as a vector in a two-dimensional flat space, and
an infinitesimal displacement as a vector in a two-dimensional curved
space.

these vectors, multiply them by scalars, etc. We can in fact
multiply them by infinitely large scalars and thus create
finite vectors.

For an important example we can start with the three-
dimensional flat space of classical physics. If a particle un-
dergoes a displacement ds in time dt we define its velocity
vector to be v==ds/dt. In space-time, curved or flat, the
analogous vector is the four-velocity

U=ds/dr. (3.1)

Heredr is the proper time the particle requires for displace-
ment ds, and is a scalar. We can multiply now by another
scalar m, the particle rest mass, to form another important
vector, the particle’s four-momentum

p=mU . (3.2)

Locally these vectors have their usual SRT meaning. Spe-
cifically, the vector p, for example, when viewed in a local-
ly Minkowskian system, corresponding to a freely falling
frame, is precisely the four-momentum that would be as-
signed to the particle by an observer in the freely falling
frame, in blissful, but appropriate, disregard of gravity.
(The technical procedure for computations based on this
idea is simple and will be given below.) For a photon, in
fact, Eq. {3.2) is inapplicable and it is best to start with the
above point of view for the definition of four-momentum.
That is, the four-momentum of the photon is the vector
that in a locally inertial frame is the usual SRT four-
momentum.

As in SRT and in classical mechanics the importance of
vectors is based on the importance of ds, the displacement.
Displacements are the starting point of kinematics, and
hence of dynamics, and vectors such as velocity and mo-
mentum necessarily arise in a description of motion. Laws
of motion—such as the familiar v = v, + Jar 2 for motion
with constant acceleration— are necessarily vector laws.

An important operation is the inner or “dot” product, a
product of two vectors A and B, linear in each vector,
which produces a scalar A-B. Since there is nothing about
the algebra of vectors at a point in space-time that depends
on curvature we already know in principle, at least, how to
compute inner products in curved space-time: we can go to
a locally Minkowskian coordinate system and compute
A.B as in SRT. It must therefore be true that

U= —¢ pp= —m?*?, (3.3)

since it is true in SRT. As in SRT we call a vector spacelike
if A-A>0, timelike if A-A <0, and null (or lightlike) if
AA=0.

Vectors are inherently geometric objects, but computa-
tions often require working with the components of vec-
tors. As is familiar from linear algebra and classical phys-
ics, a vector basis is a complete set of vectors [N linearly
independent vectors for an N-dimensional space(time)] at a
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point. We shall denote a basis by e, . (Two points are worth
emphasizing here. First, vectors and basis vectors—so
far—have meaning only at given point; the relation of basis
vectors at different points will be taken up in Sec. III C.
Second, there is no necessary connection between basis vec-
tors and components, on the one hand, and coordinates, on
the other.) With a basis e, a vector W can be written as

W= e, (3.4)
(summation convection!). The numbers W* are called the
components of W in the basis e, . It is common, and only
mildly misrepresentative, to refer to the set of components

W* as “the vector” and to a component relation (really the
components of a vector equation), such as

=g + Jatt?,
as a “‘vector equation.”

It is important to keep in mind the arbitrariness of basis
vectors. They can be chosen in any way that is convenient
for the purpose at hand. The components of a vector de-
pend, of course, on the basis vectors used. If the basis vec-
tors are changed the components W* of a vector must
change in such a way that the sum W*e, does not change.

A simple example can be given in Minkowski space-
time. If the Minkowski coordinates are ¢,x, y,z then the
most convenient basis at any point is the basis e,,e,,e,,e,
constructed as follows: The basis vector e, is taken to be
purely timelike, i.e., it is proportional to a displacement ds
for whichdt #0butdx = dy = dz = 0. In the same manner
e, corresponds to a displacement purely in the x direction,
etc. The magnitudes of the basis vectors are taken so that
the spatial basis vectors are of unit length

e.e, =e-e =e,e =1
and the timelike basis vector satisfies
eo'eo = - 1 .

Since these basis vectors are fairly obviously mutually or-
thogonal all the inner products can be summarized by

eu.ev = nuv (3'5)

and the set of basis vectors is called an “orthonormal tet-
rad.” With these basis vectors a general displacement ds
corresponding to coordinate changes dt,dx,dy,dz is

ds=cdte,+dxe,  +-dye, +dze, =dx"e, (3.6
and the components of the four-velocity are

Ur— %"7" (3.7)
and so forth.

For our simple example let us introduce new basis vec-
tors €, ,e,.,,,€, at some point (or at every point)
according to

e. =vyle, +pe) e, =e,

(3.8)

ey = yle, + pe,),
where B is some number smaller than unity, and
y=(1 — B?)~ /2. A nice feature of the new basis system is

that it too is an orthonormal tetrad since (as is easily
checked)

e -e =1, .
To find the new components U* of the four-velocity, as an
example, we must find components for which

ez’ = ez ’
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U+e, =U*e, =U.
It is easily verified that the unique solution is
U*=¢U*-BU%, U"=U",
(3.9)

U =pWU°-BU*), U*=U",

- which is immediately recognized as a Lorentz transforma-

tion. The transformation in Eq. (3.8) must therefore be the
corresponding Lorentz transformation of basis vectors. In
general, any transformation from one orthonormal tetrad,
in Minkowski space-time, to another is a Lorentz transfor-
mation of basis vectors. Note also that any orthonormal
tetrad in Minkowski space-time can be associated with a
Minkowski coordinate system.

Lorentz transformations of orthonormal tetrads and
vector components are just one type of transformation.
More generally at a point in N-dimensional space(time) any
transformation is allowed in which N linearly dependent
new basis vectors @, are given as linear combinations of
the old basis vectors @, . The technical details of transfor-
mation of basis vectors and the reciprocal transformations
of components are mostly bookkeeping problems, based on
the single guiding principle v*'e, = v*e, for any vector.
We shall manage to avoid such bookkeeping in this article
and shall not dwell on the details here. One point, though
obvious, is important enough to deserve a remark: If a com-
ponent equation, e.g., v* = v¥ + } a”t?,is true in one basis
then if the components are transformed to a new basis, the
resulting component equation, e.g., v* =v§ +a*t?,
will also be true.

There are two special and important types of basis sys-
tems in curved space-time that are used for very different
purposes. The first type of system helps to answer a ques-
tion like “What energy, momentum, etc. does some observ-
er measure?”’ There is no problem with such a question in
SRT even if the observer is accelerating. At any point on
the observer’s world line we take his measurements of vec-
tor components to be the same as those in the inertial frame
with which he is momentarily comoving. His basis vectors
then are simply the orthonormal tetrad of that inertial
frame. In curved space-time gravity prohibits the existence
of inertial frames, but gravity should have no influence on
the local laboratory measurements an observer would
make of momentum, energy, etc. We take the observer’s
orthonormal tetrad, therefore, to be that of the locally iner-
tial frame (i.e., the freely falling frame) with which he is
momentarily comoving.

We denote these basis vectors as €;,€;,€,,e; (with the
carets reminding us that the basis is orthonormal). For an
observer with four-velocity U, the basis vectors are easily
constructed when it is noted that U ., can have no spatial
components (U%,,, etc.) in this system; such components
would indicate that the observer has a nonzero velocity
with respect to the locally inertial frame with which he is
momentarily comoving! This implies that U, « @; and, in
fact that

e =c 'Ug, . (3.10)
The remaining vectors e;,e;,e; can be chosen to be any
three convenient mutually orthogonal spatial unit vectors,
each of which is orthogonal to €. They are not unique; any
rotation of one set produces another equally good set.

As an example of the application of this system we come
back to the question “What energy does the observer mea-
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Fig. 5. Coordinate basis vectors for two-dimensional curvilinear coordi-
nates. At the point x' = 4 and x* = 1 the e, basis vector is tangent to the
x! coordinate curve (the curve on which x” is constant). The arrows repre-
senting e, and e, should be considered suggestive only; finite vectors
cannot be drawn as arrows except in a flat space.

sure for a particle, or photon?” Let the particle four-mo-
mentum be P so that in the observer’s system it can be
written

p =p’e; + pe, +pe, + e, .

Paying no heed to gravity or to his own acceleration the
observer, as in SRT, takes the energy to be p° or

energy = — c€;-p,
which is often most conveniently expressed as

energy = — p-U,,, - (3.11)

It has been emphasized that there is no necessary rela-
tionship between the choice of basis vectors at a point and
the coordinate system for the space(time). The second type
of special basis system, however, defines at every point in
the space(time) a set of basis vectors, “coordinate basis vec-
tors”, uniquely defined by the coordinate system. Very
loosely speaking the coordinate basis vector e,, for exam-
ple, is the displacement generated by taking x* to increase
by Ax? = 1 along the x? coordinate line. (See Fig. 5.) More
precisely, the coordinate basis system €, is the system in
which a set of infinitesimal coordinate increments dx*
gives a displacement

ds =dx"e, . (3.12)

In words: the components, in a coordinate basis system, of
the displacement vector are the coordinate changes. The
simplest example is the orthonormal system in Minkowski
space [see Eq. {3.6)].

The distance, or interval, assigned to the displacement
ds must agree with the geometric structure of space(time)
as dictated by the metric formula. This, and the linearity of
the inner product, leads to an important fact about coordi-
nate basis systems:

ds.ds = (dx"e,)-(dx"e,) = (e, -e,)dx" dx".
But

ds.ds = (ds)* =g, dx* dx”,
so the inner products of the coordinate basis vectors are

(3.13)
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related to the metric coefficients by
ey .ev = gpv . (3. 14)

This shows, incidentally, that the coordinate basis vectors
are orthonormal if and only if the coordinates are flat.

We end this section by introducing a very useful nota-
tional convenience for coordinate basis systems. We char-
acterize a vector A not only with its usual components A #
(“contravariant components”) but also with a second set
A,, (“covariant components”) defined by

(3.15)

To find the contravariant components in terms of the co-
variant ones, we can turn Eq. (3.15) around by multiplying
by g7 [see Eq. (2.18)] and summing on y:

g4, =g%g,.A4° =8,4,=4°. {3.16)

(The raising and lowering of indices with g5 and g will
presently be generalized to noncoordinate basis systems.)

Coordinate basis vectors so greatly simplify most com-
putations that they will be used almost exclusively
hereafter.'’

A,=g,,A°.

B. Tensors

The necessity of dealing with linear relationships among
vectors at a point leads us unavoidably to mathematical
objects beyond vectors. As an example, suppose that the
vector V is a linear function of another vector W. Then in
any basis system the components ¥* must be linear in the
components W* and we can write

Ve=Tr W, (3.17)

The indexed symbol T#,, represents N 2 numbers [at a point
in an N-dimensional space(time)] and these numbers
should be regarded as defined by the relationship of V and
W. As another example take a scalar f to be a linear func-
tion of three vectors A, B, C. In any basis system we can
write the relationship

f=S.5,4°B*C?, (3.18)

thereby defining the symbol S, , which represents N3
numbers in general.

The above equations are called tensor equations as are all
equations expressing linear relationships among vectors.
The indexed symbols 7'#, and S,4, are called tensor com-
ponents and are summarized in an index free notation as
the tensors T and S. The rank of a tensor refers to the
number of indices on its components so that, for example, T
is said to be rank 2 and extended to include vectors as rank
1 tensors and scalars as rank 0. As a further example of
tensor, rank, and notation we can have a fifth-rank tensor
M defined by a linear relationship between a second-rank
tensor L and three vectors

L,=M,, AB°C7. (3.19)
A simple example of a tensor relationship in three-dimen-
sional physics is the dependence, in classical electrostatics,
of the electric polarization vector P in a dielectric medium

on the electric field E. This dependence is linear (approxi-
mately, for weak fields) and hence we can write

Pr=y* E", (3.20)

thereby defining the second-rank “susceptibility tensor” .
In an isotropic dielectric the tensor nature of susceptibility
can be avoided. In this case the susceptibility tensor takes
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the form

x4 =x8*, (3.21)
in any basis. Here 6 as always is the Kronecker delta, and
the number y is called, simply, the susceptibility. With this
type of susceptibility Eq. (3.20) becomes

Pt =y&,E*=yE*, (3.22)
showing that P and E are parallel, as must be the case in an
isotropic dielectric. A mathematically similar example
from classical mechanics is the second-rank inertia tensor,
defined by the linear dependence of the angular momen-
tum vector on the angular velocity vector.

The stress tensor is yet another, though less familiar,
second-rank tensor of classical physics. Its importance to
GRT justifies a few remarks about it here. Let dA be a
vector representing a differential area element in a stressed
medium. The vector is associated with the area in the usual
way, i.e., |dA| is the magnitude of the area and the direction
of dA is normal to the area pointing from (arbitrarily cho-
sen) inside to outside. The force dF transmitted through the
area, due to the material inside, acting on the material out-
side, can be shown to be not only proportional to the size of
the area but in fact linearly dependent on the vector dA. A
second-rank tensor T, the stress tensor, is then defined by

(@Fy =T* (dA) . (3.23)

In an isotropic medium dF must be parallel to dA and [cf.
Eq. (3.21)] the components of the stress tensor must be

T = po*,, (3.24)

where p is the pressure in the medium.

As with vector components, indices of tensor compo-
nents can be raised or lowered. In a coordinate basis this is
done with the metric coefficients g, and g**, as in

T#Va =8#0Tava =gaﬁT#VH

and so forth. It is easily verified [with Egs. (2.18), (3.15), and
(3.16)] that, for example,

VeE=Tr WY, V¢E=THW,,

V,=T,W", V,=T,W,,
all represent the same tensor relationship. As with vectors a
subscript is called a covariant index and a superscript a
contravariant index. The numerical value of a tensor com-
ponent will in general depend on whether indices are covar-
iant or contravariant (e.g., T, need not equal T},).

A tensor is said to be symmetric on two of its indices if
the interchange of those two indices does not change the
value of the component. For example, a third-rank tensor
Q is symmetric on its first and third indices if

Qosr = Crpa
for all choices of , £, and y. The interchange of indices, of
course, is considered with both indices covariant or both
contravariant. For the three examples given of second-rank
tensors in classical physics, the susceptibility tensor, the
inertia tensor, and the stress tensor, it can be shown that
each is symmetric. For each then, there are only six (rather
than N2 = 3% = 9) independent components in general.

A very important tensor in geometry is the “metric ten-
sor” @, which can be thought of as defined by the dot prod-
uct. If A and B are any two vectors then the dot productisa
scalar, call is S, given by
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S=AB.

Since this is a linear relationship a second-rank tensor g is
defined by

S=AB=g,A"B". {3.25)
The components of g are easily found in any basis since
AB=(4"e,)(B"e,)=e,€,A4"B",
and hence
8 =€,e, . (3.26)

We have already used the symbol g,,, to represent the met-
ric coefficients, i.e., the coefficients in the metric formula
[Eq. (2.16)]. The present notation for g would be intolerable
ifit were not for the fact that in a coordinate basis the tensor
components g,, are precisely the metric coefficients g,,,,.
[Compare Egs. {(3.14) and {3.26).] The metric coefficients
can thus be considered a special case (coordinate basis) of
the metric tensor components or the metric tensor can be
considered to generalize the metric coefficients to noncoor-
dinate basis systems. In any case the raising and lowering of
component indices in a noncoordinate basis system is done
with g, in precisely the same manner as in coordinate
basis systems.

So far tensors have been introduced in terms of indexed
quantities that arise in the description of linear relations
among vectors. This glib prescription underemphasizes the
crucial point that the numbers represented by these in-
dexed quantities depend on basis system. They relate, after
all, vector components that depend on basis system. Tensor
components must change from one basis to another in such
a manner that they represent the same linear relationships.
Any indexed quantity whose values do not transform in
this way cannot represent a linear relationship of vectors; it
cannot be a tensor. The importance of this point warrants
an example: In two-dimensional flat space let @, and e, be
orthonormal vectors and let them have their usual relation-
ship that e, is 90° counterclockwise from e,. Define the
symbol J# by

g = T uAy (3.27)

0 ifu=v
in any basis, and ask whether this indexed quantity defines
a tensor. If it does define a tensor then

Ve=Jr WY (3.28)

defines a relationship between vectors Vand W. In the e,
e, basis let W* =1, W” = 0so that, by Eq. (3.28), ¥ =1
and V* = 0. In words: V has the same magnitude as W and
is 90° counterclockwise from it. Consider e, =e, and
e, = — e,. This of course is simply a basis system rotated
90° from the original system. In this system W has compo-
nents W~ =0, W¥ = —1(so that W*e, = W*e,). But
according te

Vr =Jr WY
and Eq. (3.27), V" = — 1and V” = 0. In this case V is 90°
clockwise of W so a different relation of V and W results in
two basis systems and hence Eq. (3.27) does not define the
components of a tensor.

We have avoided, in Sec. III A, giving the general
scheme for transforming vector components with the ex-
cuse that the procedures were merely an issue of account-
ing. The details of the transformation of tensor compo-
nents are no more profound and are even more tedious. The
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details, therefore, will not be given here but the general
principles will be repeated: The transformation of basis
vectors forces a transformation of components of a vector
in such a manner as to ensure that the same vector is repre-
sented in the old system and the new; the transformation of
vector components forces a transformation of the compo-
nents of a tensor in such a manner as to ensure that the
component equations represent the same relationships of
vectors in the old system and the new.

Without the explicit component transformation laws we
shall not be able to give explicit proofs of a few needed facts
about tensors. These facts, ranging from obvious to plausi-
ble, are simply stated here:

(i) If a tensor is “zero” (i.e.; all its components vanish} in
one basis, then it is zero in any basis.

(ii) If tensor indices are symmetric in one frame (e.g.,
T,, = T,,) then they are symmetric in any frame.

(iii) If A and B are vectors then 4, B, are the (covariant)
components of a second-rank tensor. (Similarly 4#B " are
the tensor’s contravariant components and 4“B, and
A, B* are mixed components of that tensor.) More general-
ly a tensor of rank r, + 7, can be formed from tensors of
rank 7, and 7,, as in the fifth-rank tensor 7,,"S 4, .

(iv) Summing (“contracting”) over a covariant and con-
travariant index of a tensor of rank r>2 produces a tensor
of rank r — 2. From a fifth-rank tensor F, for example, we
can form a third-rank tensor T by contracting on the first
and third indices. The covariant components of T would be

T

aBy

ua”Br *
We could also, for example, contract over the second and
fifth indices

Sapy = Favgy” -
Here S and T will in general be different third-rank tensors.
Since it is far from obvious that contraction produces
tensors, an example is appropriate. Let D be a second-rank
tensor with components

D*=A4*B".
The claim now is that
D", =A4"B,

is a scalar (tensor of rank 0). But
A"B, =A¥g,,B*=AB
[cf. Eqgs. (3.15) and (3.25)] so D*, is indeed a scalar.

C. Covariant differentiation

So far we have focussed on tensors as mathematical ob-
jects at a single point. Now we shall consider also tensor
fields, tensors defined at every point in some region of spa-
ce(time). It will be worthwhile starting with the simplest
example, a scalar field.

The mathematical description of a scalar is not particu-
larly difficult. If x # is some coordinate system in N-dimen-
sional space(time) then a scalar field ¥ is defined simply by
specifying a single function ¥ (x#) of the N coordinate var-
iables x*. Information about the rate of change of ¥ is
contained in the partial derivatives

W, =3V /ox". (3.29)

The derivatives ¥, turn out to be the covariant compo-
nents, in the coordinate basis system, of a vector which we
call the gradient of ¥ and denote by grad W. The claim
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then is that
(grad ¥), =V, (3.30)

defines a vector. To prove this let ds be the displacement
between two nearby points; in the coordinate basis the
components of ds, are the coordinate differentials. The
change d¥ in ¥ for this displacement is just
d¥v = ¥ dx‘=(grad ¥),, dx*.
Ix*

(3.31)

Since d¥ is a scalar and dx* are vector components,
grad ¥ must be a tensor (i.e., a vector).

Note the pattern: From a zero-rank tensor ¥ we have
computed a first-rank tensor grad W that contains the in-
formation about the rate of change. The same pattern ap-
plies to all tensors. Let V be a vector field, a vector defined
at every point in some region. Across a displacement ds the
change—call it dV—in the vector will itself be a vector.
From the relationship of dV and ds we can define a second-
rank tensor grad V by

(dV)* = (grad V)*, dx” . (3.32)

More generally the rate of change of a tensor of rank 7 is a
new tensor, the gradient, of rank 7 + 1. The process of find-
ing tensors to represent rates of change of tensors is called
“covariant differentiation.”

If the components, in a coordinate basis, of the vector
field V are the functions V#{x"} it is natural to guess that

(grad V)&, = 3V /ox"=V"* . (3.33)

A simple example will show that this guess cannot be true
in general. In two-dimensional flat space let V be a vector
field with components in polar coordinates [Eq. (2.17b)]
given by

V=1, V'=0 (3.34)

at every point. The indexed symbol ¥*  then is zero for all
values of u and v. But clearly the vector field is not constant
since the “@ direction” is not a fixed direction and since the
magnitude of V, found from

VV=g V¥V’ =gg(17 =1,

increases with distance from the origin. [See Eqgs. (2.17b)
and (3.25).]

How then are the components of grad V to be found?
The above example suggests that difficulty arises because
basis vectors are different from point to point. If we allow
for this we have

dV =d(V*e,)=(dV"e, + V*de, . (3.35)

The first term on the right involves the change in the value
of the component V*. For a displacement d8 with (coordi-
nate basis) components dx * this change is just

dr¥=Vv* dx". (3.36)
Thelast term on the right involves the change in the coordi-
nate basis vector @, and is a bit more subtle. The change
de, is itself a vector and hence can be written as a sum of

the basis vectors. Since de, will be linear in ds we can
write it as

de, =I'¢, dx"e, . (3.37)
The coefficient symbol I", is called the Christoffel sym-
bol''; the I"%, are not components of a third-rank tensor.'?

Combining the above results and changing dummy indices
we find
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dV=Vr* dx'e, + V*I'%, dx"e,
=(V*, + VI )dx"e,.
The comparison with Eq. (3.32) gives us
(grad Vy*, = V* + VI, . (3.38)

Neither term on the right gives tensor components by itself,
but together the two terms do give the components of the
second-rank tensor (grad V).

The combination of symbols on the right of Eq. (3.38) is
commonly'? and conveniently abbreviated as F'*, so that

(grad Vy, = V* . (3.39)

The semicolon notation is used similarly for the compo-
nents of the gradients of tensors of all types. For example,
the covariant components of the gradient of a second-rank
tensor T would be

(grad T).5, = T, - (3.40)

The mixed components (some covariant indices, some con-
travariant) of the gradient a third-rank tensor S are written

(grad §),”7, = 8,7, (3.41)

and so forth.

The prescription [Eq. (3.38)] has been given so far only
for the computation of these gradient components in one
case. In other cases {covariant components of gradV,
components of higher rank gradients) there is no new diffi-
culty, only the old difficulty of basis vectors which change
from point to point. It should not be surprising then that
the same Christoffel symbol appears in all cases to handle
the rate of change of the basis vectors. The general pre-
scription will be inherent in the following examples.

For a vector field V the covariant components
(grad V),, =V, are calculated from

Viy =V, —Vils,

v (3.42)
(see Appendix). Since V'*, and V., are tensor components
they could equally well be computed from
V 3V = g_ua Va;v N

e
The components in Eq. (3.41) are given by

S, =S5, —SPTL, +8,4T%, +S,PT7, .
(3.44)

The pattern is a partial derivative term followed by one I"
term for each index of the tensor being differentiated. If the
index is covariant the I' is added with a negative sign; if the
index is contravariant, with a plus sign.

We have up to now avoided a direct confrontation with
the question: What is the meaning of a change in a vector
(or tensor) from one point to another? How can we compare
vectors at different points? This question of course seems
superfluous in flat space(time). A vector there is the same at
two points if it has the same direction and magnitude, i.e., if
it has the same components in a flat coordinate basis, a
system in which the basis vectors do not change. This gives
the key to the answer in curved space(time): To find the
change in V from point P, to the nearby point P, weset upa
locally flat coordinate system at P, (or, equally well, at P,).
In this system we simply find the changes in the compo-
nents ¥* and that tells us the vector dV. We can then trans-
form the components of the vector dV to a useful coordi-
nate basis. The conceptual meaning is then: Curvature does
not enter into the differential change of a vector. The
change is a local question and a local answer can be given.

(3.43)
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This is a nice conceptual background for covariant dif-
ferentiation, but not a practical algorithm for computing
components of gradients. For that we need a way of com-
puting the Christoffel symbols. It is shown in the Appendix
that the needed formula is

Iz = ign/l(g;.ﬁ,y + &8 —Loya) -

It is well worth emphasizing that this formula, as well as
the pattern of covariant differentiation given in Eq. (3.44),
apply only in a coordinate basis system. Covariant differen-
tiation can certainly be done in other basis systems, but the
formulas are more complicated.

From Egq. {3.45) it follows that the I"’s are symmetric on
the lower indices

a __ a
rBr"rrB’

(345)

sothatin an N-dimensional space thereare only AN (N + 1)
independent I"’s. Perhaps the simplest example is given by
polar coordinates in two-dimensional flat space [Eq.
{2.17b)]. In the polar coordinate basis the I"’s are

Iee=—r, I',=0, r39=0, rfr=0’
rreﬂzrgrzr_l’ r:6=F;r=O'

We are now in a position to find the gradient of the vector
field example of Eq. (3.34). With Eq. (3.38) and the I'’s
above we find that the only nonvanishing components of
grad V are

Vie=—r, VO =r'.

The “locally flat viewpoint” facilitates the proof of sev-
eral important features of covariant differentiation. For ex-
ample, for any metric tensor

8apy =0. (3.46)

That is, the gradient of the metric tensor is always zero.
The proof is simple when LF coordinates are introduced at
a point. At this point g5, =0 [Eq. (2.22)]. But clearly
there are no first-order changes in the basis vectors in a
locally flat system, hence all I"’s are zero. We conclude that
grad g is zero in an LF coordinate basis and hence in any
basis. With similar arguments it is easy to show that in most
instances the semicolon operates like the comma of partial
differentiation:

(4 aBﬁy );” =4 awBBy + A aBBW‘ , (3.47a)
(4,.,B* );u = A4, B L A4, B "ﬁm , (3.47b)
gaﬁw =0, (3.47¢)
Vap = (garVy)ﬁ =8ayg V" +garVY‘»8 = &ay Vig.
{3.47d)

The second, third, etc., covariant derivatives of a tensor
field are defined in the obvious way, e.g., for the vector field
Vv,

[gradigrad V)] .., = (grad V), .=V ., . (3.48)
Arguments based on locally flat coordinates cannot be
used to prove that

Vws = Vg (3.49)

since it is not true in general! We will find in Sec. IV that the
failure of this equation is closely related to a quantitative
measure of curvature.
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IV. GEODESICS, CURVATURE, AND GENERAL
RELATIVITY

A. Geodesic equation

In Sec. II C gravity and geometry were united by the
principle that free particles move on geodesics. Geodesics
were defined as “locally straight” curves, but the equation
for geodesics was derived in Sec. II B from a variational
principle, not a “local” principle. The mathematics of Sec.
III will now be exploited to do things right.

If a force F is acting on a particle, the particle’s four-
momentum will not be constant but will change according
to

P _g
dr

Whether or not a force is acting is a local question. At a
point Pon a particle’s worldline Eq. (4.1) can be viewed in a
locally Minkowskian system. The rate of change of four-
momentum prescribed by this equation is just the rate that
would be observed in the corresponding freely falling
frame. The weak equivalence principle tells us that in the
freely falling frame no acceleration of the particle will be
observed at Pif only gravity is acting, i.e., F has no gravita-
tional contributions. A free particle must therefore obey

(4.1)

a4 _,. (4.2)

dr

The dynamical meaning of this equation is given to us by
the weak equivalence principle. Now let us consider the
geometric meaning. The four-momentum p is a tangent to
the particle’s worldline since, for displacement ds along
the worldline,

ds

p=m dr
[see Eqgs. (3.1) and (3.2}]. Equation (4.2) tells us that this
tangent to the worldline does not change along the world-
line. But this is precisely what we mean by a locally straight
line: a curve along which the tangent to one segment is in
the same direction as the tangent to the next! The geodesic
equation for a timelike curve is then precisely Eq. (4.2).

To show the equivalence with the result in Sec. II B we
analyze Eq. (4.2) in a coordinate basis system. For a dis-
placement ds (components dx *} along the worldline, we
know from Sec. III C that

(dp)# =pﬂ;v de ’
so that the 4 component of Eq. (4.2) is

(o) - coor _, ir
dr dr Yodr
But

' _ v P

dr m

and the equation becomes

P p"=0. 4.3)
We can equally well write this equation as
v uv=0 (4.4)

after dividing by m?. (Our definition of “particle” tacitly
includes the requirement that rest mass is constant.) From
Eq. (4.4) and U =dx"/dr we have
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0=(U*, + U4 )U" = (% + U”I""v) ‘Z‘T
_dur _ dxds .,
dr dr ar = %’
and finally
d’* 1 dx"dx’

— — g —_ =0. .
de + 2 dT dT g# (g'yﬁ,v +gvy,B gﬂv.y) 0 (4 5)
When this equation is multiplied by g,,, (and summed over
1) the result is identical to Eq. (2.31).

Equations (4.4) and (4.5) cannot apply to photon world-
lines since neither 7 nor U is defined for such worldlines.
The basic principle that dp = 0 along the worldlines still
applies, of course. To use this for a null line x“(4 } we can
choose a special parameter, an “affine parameter” 4 such
that'¢

_x (4.6)
dA
The equation
ap _, (4.7)

dA

has as its components Eq. (4.3). When Eq. (4.6) is used in
Eq. (4.3) and the details worked out the result is just Eq.
(4.5) with 7 replaced by A.

Geodesics in Minkowski space are, of course, straight
lines. For a more interesting example let us turn to the (as
yet unexplained) Schwarzschild geometry in Eq. (2.17¢)
and ask whether there are “circular” (constant r) geodesics.
Such geodesics correspond to circular particle orbits in this
geometry. We will furthermore intuit that such circular
orbits can lie in the “equatorial plane” 6 = 7/2. The real
test of this assumption of course will be whether the geode-
sic equation is satisfied. We seek then geodesics character-
ized by 6 = 7/2,d6 =0, r = const, dr = 0. For such geo-
desics we immediately have p = OQand p " = 0. Only p° and
p? are nonzero. We now use these in Eq. (4.3), or

.+, =0,

which applies equally well to (massive) particles or to pho-
tons. The four differential equations represented by Eq.
(4.8) can be evaluated with the Christoffel symbols given in
the Appendix. The ¢ = 0 and p = ¢ equations tell us that
p° and p? are constants along the geodesics, and the u = 8
equation is automatically satisfied. The critical equation is
the radial (u« = r) equation that reduces to

(P°V'T 0 +(p*PT Gy =0.
With the I"’s in the Appendix this gives
(p*/ PV =rp/2r°

(4.8)

From p* «dx* it follows that p¢/ p® = ¢~' d¢ /dt. This
tells us that a geodesic is given by

r=const, @=w/2, $¢= twt, (4.9)
where
0=r, /27 (4.10)

We now can ask what kind of geodesic this is, timelike or
null. From the metric coefficients of Eq. (2.17¢) and the
formula in Eq. (3.25) we calculate
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PP =8, PP = 8ool PV + 844 P*)
=(p°)2[—(1 —%")+’2—‘;’2—] =(p°)2(— 1 +3£).

c 2r
(4.11)
For r> 3r, /2 the geodesic is timelike and represents a pos-
sible orbit for a free (massive) particle. For r = 3r, /2 the
geodesic is null and represents a possible photon orbit. Cir-
cular orbits are impossible for r < 3r, /2.

B. Geodesic deviation and curvature

As discussed in Sec. II the real measure of gravity is the
relative acceleration of nearby free particles. We are now
ready to relate this to space-time geometry. Imagine a fam-
ily of timelike geodesics such that in some finite region of
space-time there is a geodesic through each point (i.e., the
geodesics fill the region and do not cross). Adjust the zero
point of proper time (the time the clock on each geodesic
starts) so that for nearby points on nearby geodesics the
proper time difference is small. Since there is a geodesic
through every point we have a value of U = ds/dr at every
point and we can treat U as a vector field. Since every curve
is a geodesic Eq. (4.4) is satisfied at every point in the region.

We shall now pay particular attention to one arbitrarily
chosen geodesic C, in the neighborhood of one of its points
P. {See Fig. 6.) Let C, be a nearby geodesic and define § as
the differential vector connecting nearby points of equal
proper time 7 on C, and C,. We now calculate the relative
four-velocity V., of the two geodesics. By taking the differ-
ence of U at the ends of the differential vector § we find
V., = dU or, in components,

Ve, =UPE". (4.12)

Since the relative velocity is also the rate at which §
changes, V., must equal d&/dr so that

dg\s dx?
144 =(——) =£8 2 (B UV, 4.13
1 d'r g K3 dT § Y ( )
The result
U”;7§Y=§B;TU" (4.14)

follows from a comparison of Eqs. (4.12) and (4.13). We

Fig. 6. Family of geodesics used for the discussion of geodesic deviation.
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shall need also a result that follows from Eq. (4.4):

0= (U, U")3£P=U2, U + UsU7,£7.  (4.15)
With the aid of Eq. (4.14) this can be written as
Ue, UEP=~U® £7,UP. 4.16)

The relative velocity V,; between the geodesics tells us
nothing about space-time geometry, just as the relative ve-
locity of two particles tells us nothing about the effects of
gravity. Rather we must consider the relative acceleration
a

rel

ﬂfi=_.d_(£§_)=a
dr dr\dr)

This will tell us—in terms of Newtonian jargon—the rela-
tive gravitational acceleration of nearby free particles and
thereby, in a coordinate independent manner, will reveal
the presence of gravity. From the viewpoint of geometry, it
will measure the relative bending of “the best straight
lines,” and hence will reveal curvature. We need only per-
severe in the rather tedious task of evaluating, with Egs.
{4.12) and (4.16), the components of Eq. (4.17) in a coordi-
nate basis system:

av 1)“ dx?
ay = (=) = v, S = Ve, U
: ( dr Y dr b
= [Ua;rgy];ﬁ U= Ua:r;ﬁg Ut + Uar§ y;ﬁ UB
=[Ue, , — U=, JETU". (4.18)

The term in square brackets here is interesting since it in-
volves the commutation of second covariant derivatives
[cf. Eq. (3.49)]. In flat space-time we could introduce flat
(not just locally flat!) coordinates and the term in brackets
would read

(4.17)

U®,z— U?g, {flat space-time

4.19)
and would vanish since partial derivatives commute. Since
the term in square brackets is tensorial it follows that it
must vanish in flat space-time in any basis; it is a zero tensor
in fiat space-time. Its value then will indicate something of
the nature of space-time curvature.

Equation (4.18) still awaits final evaluation which we ac-

complish using

Ua:V;B = [UaV]B = [Uc'lr ].B + U;AY ZB - U;-F;l’ﬁ’
(4.20b)

and so forth. After much manipulation we are rewarded

with a surprising result

@i =R UV, (4.21)

a a a a a a a °4
R, Eaﬁ'(rir)_a—y(rw)*‘raﬂrw—Fayfm.
(4.22)

C. Curvature

The big surprise in Eq. (4.21) is that @, at a point does
not depend on the derivatives of U or § but only on the
values of U and £ at the point. Equation (4.21) is thus a
tensorial equation relating U, §, and a,; thereby defining a
fourth-rank tensor R the “Riemann curvature tensor.” The
components of this tensor can be evaluated with the unlike-
ly seeming combination of symbols on the right-hand side
of Eq. (4.22). It is worthwhile to note that in LF coordinates
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the I"’s vanish but not their derivatives, nor can we in gen-
eral find coordinates [except in flat space{time)] in which
the derivatives of the I"’s vanish. If we could find such co-
ordinates then we would calculate the components of R to
be zero in this coordinate system and hence in any coordi-
nate system, since they are tensor components. For the
Schwarzschild geometry and coordinates of Eq. (2.17¢) we
have, for example, that

R Or()r — rg/rz(r _ rg) R (423)

so we can be sure for this geometry that coordinates do not
exist in which the derivatives of the I"’s vanish; we can be
sure that the Schwarzschild space-time is not flat.

The Riemann tensor clearly tells us something about
curvature. Although it is certainly not obvious, the Rie-
mann tensor in the following sense tells us everything about
curvature: If the Riemann tensor vanishes in some finite
region of space-time, coordinates can be found for which
the metric formula takes on the flat form. 4 region of space-
time (or the whole of space-time) is flat if and only if the
Riemann tensor vanishes in that region. A complete exami-
nation of space-time curvature then requires the computa-
tion, in some basis system of all the components of R. This
task is formidable but eased somewhat by the fact that the
4* = 256 components of R are not all independent. The
component symmetries of R reduce the number of indepen-
dent components to a “mere” 20. [In an N-dimensional
metric space or space-time the general result is
N*N?—1)/12.] These 20 components carry the informa-
tion about curvature that we heuristically summarized as
the “radius of curvature” in Sec. II B.

There is no measure of spacetime curvature at a point
with more information than that contained in the Riemann
tensor, but there are measures containing less information.
Most importantly, by “contracting” (see Sec. III B) R on
two of its indices we define a second-rank tensor, the “Ricci
curvature tensor” a second-rank tensor with components

Ruy=R %y - (4.24)

The tensor is symmetric on its indices and hence only 10 of
its 16 components are independent. By contracting once
more we arrive at the Ricci scalar

R=R* =g"R, , (4.25)

which gives only a single numerical measure of curvature
at each point of spacetime.

D. GRT field equations

We have already discussed, toward the end of Sec. II C,
the need for at least two mathematical measures of curva-
ture. The Riemann tensor certainly seems correct for Eq.
(2.35) since it describes the relative acceleration of free par-
ticles and since it describes everything about spacetime
curvature, just as V@ in Newtonian theory describes every-
thing about gravity. According to the discussion at the end
of Sec. II C the Riemann curvature tensor itself must not be
set equal to an expression involving gravitational sources.
The Ricci tensor and Ricci scalar seem more appropriate to
this task since they can vanish without the Riemann tensor
vanishing. A plausible seeming source equation for gravity
might, for example, be

R =kGc *, (4.26)
where R is the Ricci scalar, p is the mass-energy density,
and Xk is a dimensionless constant. This source equation
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would have the Ricci scalar vanish outside gravity sources
(i.., where p = 0) but the Riemann tensor could still be
nonzero. This theory then would allow space-time curva-
ture, tidal gravitational effects, etc. outside of sources.

Equation (4.26) cannot of course be the correct source
equation. The left-hand side of this equation is a scalar but
the right-hand side—as was pointed out in Sec. I C—is a
component of a second-rank tensor. This tensor, the
“stress-energy tensor” T, is a symmetric (T, = T,,) ten-
sor that contains all the information we need about the
nature of a gravity source. The physical meaning of T can
be seen in its components as evaluated in an orthonormal
basis corresponding to some observer. The components are
related to the mass-energy density, etc. measured by that
observer in the following way:

T = mass-energy density

T% = ith component of energy ﬂuxXc"} ..
hj=x)2.

(4.27)

(For the meaning of the stress tensor see Sec. III B.} It
should be understood that T can contain contributions
from particles (massive or massless) and from fields (elec-
tromagnetic, nuclear, . . .) but the stress-energy tensor con-
tains no contributions identifiable as gravitational energy,
gravitational energy flux, or gravitational stress. This is in-
herent in the prescription above that the components are
measured in a local system, in which gravity does not make
an appearance. These few sketchy remarks are all that will
appear here about the stress-energy tensor. A deeper dis-
cussion of T and (most regrettably) examples of how it is
computed will be victims of the brevity of this tutorial
article.

From the discussion in Sec. I1 it is by now clear that the
source equation for gravity should relate the Ricci tensor to
the stress-energy tensor. In GRT the precise form of this
relation (the Einstein field equations) between curvature
and stress-energy is'

R,, —ig, R =8rGe™*T,

uv *

TY = components of the stress tensor

(4.28)

This equation seems plausible enough. It sets a symmetric
tensor equal to a symmetric tensor, it is dimensionally cor-
rect, and it has the right aura of having mass-energy densi-
ty, etc. place a condition on space-time curvature. The real
justification of Eq. (4.28) is rather more solid and lies in its
self consistency. Suppose that the source of gravity is a set
of massive particles that interact only via their mutual
gravity. The stress energy then is that calculated (in a way
not to be found in this article) for the particles. The particle
motion and the time-changing geometry are interrelated
according to Eq. (4.28). At the same time, we know, the
particle motion and the geometry are related in that parti-
cle world lines must follow geodesics. For the specific form
of Eq. {4.28) these requirements turn out to be compatible.
This would not be the case, e.g., if the — ig,,, R term were
dropped in the equation.

For regions of space-time with T,, =0, Eq. (4.28) sim-
plifies to

R, —18.R=0. (4.29)

If we contract the left-hand side on its two indices and use

the fact that
8."=8.8"=08,6=4, (4.30)

we have
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R—-J4R= —R=0, (4.31)
so that Eq. (4.29) may be replaced by
R,, =0 {Einstein field equations for vacuum.  (4.32)

This is the form of the field equations we shall use in Secs. V
and VI to examine the gravitational field outside of
sources.

E. Calculations in GRT

We now claim to have a theory of gravity. Equation
(4.28) tells us how mass-energy, etc. generates curvature,
and geodesic motion—more generally Eq. (4.1)—tells us
how particle dynamics'® are influenced by curvature, but
how is this theory used? It’s helpful to review how a much
more familiar theory, classical electrodynamics, is used. In
principle in electrodynamics we could specify at any initial
time the position and velocity of all charge carrying parti-
cles, and the instantaneous values of the E and B fields. The
Lorentz force equation could then be used to evolve the
position and velocity of the charged particle and the Max-
well equations could be used to evolve the E and B fields. In
principle also, gravitational problems could be attacked in
this way, but there are some important new subtleties.
What do we evolve forward in time analogously to the evo-
lution of E and B? The answer seems at first to be the metric
components g, . The field equations (4.28) after all are, in
essence, second-order differential equations for the g,,,’s.
[The Riemann tensor, and hence the Ricci tensor and sca-
lar contain derivatives of g,, only up to second order; see
Egs. (3.108) and (4.31).] The analogy to electrodynamics
would then be to specify the g,,, and their first time deriva-
tives, at some initial time and to evolve the g,, via these
differential equations. But this is not and cannot be all there
is to it. If we could truly solve for a specific set of functions
g, we would be finding not only the geometry but also the
coordinates in which we are describing the geometry subse-
quent to the initial time! The field equations cannot pre-
sume to force us to use a particular coordinate system, so
contained in this set of equations there must not be (and
there are not) enough independent equations to evolve the
8,.- What must in fact be done is that an a priori choice
must be made of some characteristics of the coordinates, so
that the coordinate system is in some sense fixed at the
outset before the g, are ever calculated.'” The manner in
which this is done is to put some constraints on the func-
tional form of the g, (four constraints to eliminate the four
degrees of coordinate freedom). The constraints must be of
such a nature that they impose no a priori restrictions on
the geometry. Constraints involving the first derivatives of
the g, are used for this purpose since the information
about the geometry is contained in the second derivatives
of the g,,,’s. The technical details of this general approach
are considerably beyond the scope of this tutorial article.

This all appears terribly complicated and it is. Only in
the past few years, with very large computers fed by very
persevering researchers have computations of this type
(“numerical general relativity”) become at all feasible. It is
important to realize though that this type of “‘evolving for-
ward in time” calculation is not the sort of problem scien-
tists usually study in classical electrodynamics. Neither is it
the type of problem usually investigated in GRT. Most
problems in electrodynamics can be categorized as one of
two types: (i) From considerations of the physical problem
the nature of the sources is known at the outset (examples:
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static distributions of charge density, steady currents in
wires, etc.); the problem is to find the fields due to these
sources. (ii) The fields are known and the problem is to find
the resulting motion of charged particles, magnetic dipoles,
etc. In GRT tractable problems are also usually of these
types. (Example: For a spherical static distribution of mass-
energy find the exterior gravitational field—i.e., the space-
time geometry.) In Sec. VI we shall see an example of such
tractable problems but first, in Sec. V, we shall try to make
a bridge to more familiar territory by asking what happens
to the relativistic theory of gravity when gravitational
fields are weak.

V. LINEARIZED THEORY

In GRT, gravity is described not as a field in space-time
but rather as the curvature of space-time itself. We have, on
the other hand, a venerable theory of gravity that for 300
years and for most present day science and engineering,
gives perfectly adequate results, yet that contains no hint of
the concept of space-time curvature. We investigate now
the appearance of GRT in the limit of weak gravitational
fields—gentle space-time curvature—in order to under-
stand its correspondence to Newtonian theory.

If space-time curvature is zero in some region or the
whole of space-time it is possible to introduce coordinates
in which the metric takes on the flat Minkowski form
8.v = My If space-time is nearly flat it must be possible to
introduce nearly flat coordinates, in which

gyv = nyv + hyv (5‘1)
with small 4,
h,,<1. (5.2)

“Nearly flat” here means the effects of gravity are weak.
Somewhat more precisely it means the “radius of curva-
ture” of space-time as measured by the Riemann tensor is
large compared with other length scales of the problem.
Clearly, the small “metric perturbations” 4, contain all
the information about gravity. The essence of our tech-
nique in studying weak field gravity will be to compute
needed expressions only to lowest order in the 4,,. The
appearance of the resulting “linearized GRT” will be that
of a theory couched in terms of Minkowski space-time,
containing a dynamical tensor field 4,,, which governs
gravitational phenomena. We define, for example, ##, and
h*' by

h 'uv E—nﬂahav ’

B = Ph g, (5.3)

h;tv = 77;1(1 nvﬂ’h o8 4
as if the metric and coordinates were Minkowskian. It
should be noted that contravariant / ’s are not the perturba-
tions of the contravariant metric components. Rather to
first order in the perturbations,

g#v — nﬂv . h uv .
The proof can be seen from
gﬂvgva = (77‘"’ —h ”V)(nva + hva)
=6, —h*, +h*, +0hY)=8, +O0(h?.
(5.5)

(5.4)

A. Newtonian limit

Before developing the linearized theory in a little detail
let us make the connection between GRT and Newtonian
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theory. The weak field assumption is not enough for this;
two more assumptions are needed. First, we recall that
Newtonian theory and SRT are not compatible, so in our
comparison we will require that particle velocities be very
small compared to light velocity. Second, we know that in
Newtonian theory changes in the gravitational field are
propagated instantaneously. To avoid that possibility we
shall require that the gravitational field be static. For our
space-time then we will require that there exist a choice of
time coordinate for which

1 oh,,
0= "ot

The geodesic equation, describing the motion of particles,
has spatial (i = x, y,z) components

h =0. (5.6)

d*x' ;
= —-yUr*u'r,, . 5.7

= pv (5.7)
The requirement of low velocity gives us

U U', U°=c, drx=dt, {5.8)
so that Eq. (5.7) becomes

dx ; .

e =~ — o =4cPhoo 17, (5.9)

where approximately equal signs (~) indicate that correc-
tions of order v/c and A have been ignored. In ordinary
three-vector notation Eq. (5.9) reads

d*x
= V(}hoot®
e (4h00c”)
This has precisely the form of the Newtonian equation for
gravitational acceleration if we make the identification to
the Newtonian gravitational potential @ by

hoo= —2®/c*. (5.11)
In linearized theory the field equations simplify greatly.

The terribly nonlinear relationship between the metric and
the Riemann tensor given in Eq. (4.22) simplifies to

Rauﬁ‘v = %(hav,;tﬂ + huﬁ,va - huv,aB - haB,,uv) ’ (5‘ 12)

if terms of order 4 ? are ignored. The commas in the sub-
scripts here indicate, of course, partial derivatives (equal to
covariant derivatives for the Minkowski metric). With Eq.
(5.12) we can fairly easily compute the Ricci tensor to find
that

Roo = — $hoo 7" - (5.13)

The vacuum field equation [see Eq. (4.32)] Ry, = O then
reads

(5.10)

Bhoo

= —1 Z pe =V} —1lhy) =0 (5.14)

i=1
which is compatible with the identification in Eq. (5.11) and
the Newtonian equation V>® = 0. In fact the Newtonian
limit'® of the nonvacuum equation (4.28) is precisely the
Newtonian equation

V(= Lhoc?) = 4G p , (5.15)
(where p is mass density) if the identification in Eq. (5.11) is
made.

The above Newtonian limit of GRT clarifies an issue
raised in Sec. II. It was noted that Newtonian theory can-
not be modified into a scalar theory of gravity because the
Newtonian potential @ is really the component of a second-
rank space-time tensor, just as the electric potential @, is
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really the component of a space-time vector A. We have in
the above discussion the mathematical meaning of that
claim.

B. Lorentz gauge

We now return to the question of linearized theory with-
out the restriction of the Newtonian limit. To do this we
must confront an important but subtle point: There is not a
unique choice of coordinates in which the metric takes on
the form [see Egs. (5.1) and (5.2)] “metric = Minkowski
metric plus small perturbation.” We have of course the
freedom to make Lorentz transformations of our nearly
Minkowskian coordinates. Under such transformations
7, and A, transform, of course, just as the tensors of SRT
do. In addmon however, we have the possibility of trans-
forming from one set of nearly flat coordinates to another
that wiggle in a slightly different way. The metric perturba-
tion 4,, in other words contains information not only
about grav1tat10nal fields but also about just which “nearly
flat coordinates” we have chosen. This in fact is a miniature
version of the coordinate choice ambiguities sketched out
in Sec. IV E. [This caused no difficulty in the above discus-
sion of the Newtonian limit chiefly because the condition in
Eq. (5.6) sufficiently fixed the coordinates.]

Rather than decry this situation we shall exploit it and
shall choose the coordinates in such a way that the 4, have
a conveniently simple form. This type of exploitation
should not be totally unfamiliar. The electromagnetic po-
tentials, for example, have ambiguity somewhat analogous
to that of the metric perturbations. This ambiguity is ex-
pressed in the fact that the four-vector potential A can be
replaced by

A. =A+grad4, (5.16)

where A is any scalar function, without changing the mea-
sureable quantities (the E and B fields) that can be derived
from A. The general freedom to make a change in a poten-
tial-like field (i.e., one that is part of the mathematical
structure of the theory but is not directly measureable) is
called gauge freedom and the allowable change in the field,
a gauge transformation. By changing the nearly flat coordi-
nates in our nearly flat space-time we effect therefore a
gauge transformation of the 4, . In electrodynamics this
freedom is used to demand that A satisfy some simple con-
dition, e.g., the “Lorentz gauge”

VA=4*,=0. (5.17)

In linearized theory we make a similarly convenient gauge
choice. This choice is expressed most easily if we first define

h=h,"=0""h,g ,
has=hos — Wagh,
=P,
h=h,*=1"h5= —h.

The gauge choice, also called the “Lorentz gauge,” for the
metric perturbations is

hef,=0.

(5.18)

(5.19)

The convenience of this choice shows up in the linearized
field equations. If the Riemann tensor is computed from
Eq. (5.12) the first-order field equation in terms of A are
found to be
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0%, =h,,.sm% = — 16mGe*T,

v (5.20a)
0 (vacuum).

(5.20b)

In this gauge, linearized GRT does indeed have the appear-
ance of an “ordinary” special relativistic field theory.

C. Gravitational waves

Equation (5.20b) has the form of a tensor wave equation
and we can immediately find solutions to it of the form

h,, =A,, explik(z—ct)]. (5.21)

This is the solution for a monochromatic gravitational
wave (a wave of the gravitational field, a wave of space-time
geometry) propagating in the positive z direction with fre-
quency @ = kc. The A,, are constant, are symmetric
A,, =A,,,and are required by Eq. (5.19) to satisfy the four
gauge conditions

AOO_A02=Ax0_sz=Ay0_Ayz=Azﬂ_Azz=0‘

(5.22)

The physical meaning of the gravitational wave is con-
tained in the effect of the wave on the relative acceleration
of nearby particles.’® Let us consider therefore an experi-
ment in which two nearby particles are nearly at rest in the
laboratory, so that in the laboratory frame the four-veloc-
ity U of either satisfies

Ul~c, UigU°. (5.23)

The relative acceleration of the two particles is then given
by the equation of geodesic deviation (4.21) in this slow-
motion approximation:

a% =R, E7, {5.24)

where t is laboratory time and £ is the displacement vector
between the two particles.

With Eq. (5.12) the Riemann components for the gravi-
tational wave of Eqs. {5.21) and (5.22) can be explicitly com-
puted. The only nonvanishing (to first order in 4,,, ) compo-
nents of the type that is needed for Eq. (5.24) are

R = — Ry, =10%(4,, — A, Jexplik(z —ct)],
(5.25)

R %, = R0y, = — J0’4,, explik (x —ct)] .

This result shows that the effects of the passage of the wave
in the z direction are purely transverse to the z direction;
the accelerations are only in the x and y direction and in-
volve only the x and y components of the particle separa-
tion. The wave, furthermore, has only two degrees of free-
dom, contained in the numbers 4, and 4, :

A+—=—5(Axx _Ayy) ’ AXEAxy -

In Fig. 7 is shown the effect, on a circular ring of free
particles, of the passage of a “pured " {i.e., 4, = 0)wave
and ofapure 4, (i.e., 4, = 0)wave. Itis clear in the figure
that the effect of the wave is to force the ring to deform into
an elliptical appearance. For the pure 4, wave the ring of
particles oscillates between an ellipse with the x axis as the
major axis and an ellipse with the y axis as the major axis.
The pure A, wave has a similar effect but the principal
axes are rotated by 7. This is reminiscent of the two linear
polarizations of a plane electromagnetic wave for which
the two independent linear polarizations (e.g., E* and E?)
have the same physical effect rotated by /2. Much of the
familiar terminology of electromagnetic radiation is used
also for gravitational waves. The two independent gravita-

(5.26)

320 Am.J. Phys, Vol. 50, No. 4, April 1982

y
\ 'y /
~ Ve
* ——— X
o« ~

Fig. 7. Effect on a circle of particles of the passage in the z direction of a
gravitational wave of (a) pure type 4 , and (b) pure type A, . The arrows
indicate the magnitude of the acceleration relative to the center of the
circle, at phase zero of the wave.

tional wave modes 4, and 4, are called linear polariza-
tion modes and have many mathematical properties simi-
lar to those of the linear polarization modes of the
electromagnetic wave. A superposition of 4, and 4,

waves with the same phase (or 180° phase difference) gives a
wave whose effect is to deform a ring of particles into an
oscillating ellipse with principal axes not necessarily
aligned with, or at }r to, the xy axes. A superpositionof 4,
and A4, of equal magnitude but 90° phase difference gives a
circularly polarized wave, a wave whose effect is to pro-
duce a rotating elliptical deformation on the ring of
particles.

The difficulty of experimentally detecting gravitational
waves can be found roughly from the above discussion of
the geodesic deviation equation. Equations (5.24) and (5.25)
tell us that the gravitationally induced acceleration is of

order:
acceleration ~ w*(displacement)(size of 4,,, ) . (5.27)

Attempts are now being made to detect gravitational waves
of typical frequency @~ 10* sec™' with detectors of size
~1m, so that effective accelerations are

Richard H. Price 320



~10° m/sec’(size of h,,, ) . (5.28)

The expected size of metric perturbations in the neighbor-
hood of the Earth due to explosive astrophysical events in
the Universe, e.g., supernovae in distant galaxies, is of or-
der 102! or 10722 50 that to detect such events gravita-
tional detectors must measure acceleration on the order of
107" m/sec?.

Do gravitational waves carry energy? Imagine the ring
of particles to contain weak springs connecting the parti-
cles. We can be sure, even without going through the de-
tails, that under the combined action of the springs and the
gravitational wave, the ring of particles must still deform
somewhat. This will cause the springs to stretch so that
elastic energy appears in the springs. In this sense the gravi-
tational wave certainly must contain energy if we are to
maintain that energy is conserved.

There is a good reason that the word “energy” is being
handled with such delicacy here. With GRT we have the
usual kind of energy conservation on a small scale; in a
laboratory small compared to the radius of curvature of
space-time, energy is conserved. “Gravitational energy” of
course doesn’t enter into the energy budget since there are
no gravitational effects on such a small space-time scale.
There is no large scale equivalent of this very basic princi-
ple of physics. In GRT there is no general principle of
large-scale energy conservation. It only requires some mus-
ing about such concepts as the “gravitational potential en-
ergy of the whole Universe” to make it plausible—or at
least acceptable—that in GRT there is no such thing. Com-
mon sense, on the other hand, tells us there are situations
(e.g., gravitational binding energy of a star) in which there
is such a thing as gravitational energy and common sense,
even in curved space-time, is a powerful principle of phys-
ics. For this reason it is good that in situations where gravi-
tational energy makes sense we can find mathematical
things to say about it. One such situation is the energy
stored in gravitational waves. This subject was not really
clarified® until the 1960s and we cannot discuss it in detail
here except to say that gravitational wave energy is mean-
ingful only when averaged over several wavelengths. Un-
like the case for classical electromagnetic waves, energy
cannot be sharply localized in the waves. In any case with
this conceptual foundation fairly simple formulas, not very
different in appearance from the analogous electromagnet-
ic formulas, can be worked out for gravitational wave ener-
gy flux, and with these formulas gravitational wave astron-
omy can be dornie in blissful ignorance of the slippery nature
of gravitational energy.

VI. SCHWARZSCHILD GEOMETRY
A. Derivation of the metric

The most important solution to the GRT field equations
is fortunately one of the simplest, the spherically symmet-
ric vacuum solution. This is the solution for the gravita-
tional field outside a spherical star (or spherical whatever).
Itis the analog of the solution @ = — GM /r to the Newto-
nian field equation V2® = 0. The geometry is called the
Schwarzschild geometry after Karl Schwarzschild?' who
first found this solution to Einstein’s vacuum field equa-
tions in 1916.

As is always the case in GRT the metric will contain
information both about the geometry and about the coordi-
nates. Even in Minkowski space-time the metric can be
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made to look arbitrarily complicated with a sufficiently
foolhardy choice of coordinates. To arrive at a form of the
metric that makes the simplicity of the Schwarzschild ge-
ometry manifest let us then first carefully choose coordi-
nates appropriate to the spherical nature of the geometry.?
By ““spherical symmetry” we mean that space-time can be
filled with closed two-dimensional surfaces (“‘spherical sur-
faces”) and that on each of these surfaces there is no geo-
metric distinction between one point and any other. The
familiar coordinates for labeling points on such a surface
are the usual angles 8 and ¢. The other two coordinates of
space-time, the coordinates that distinguish one spherical
surface from another, will be named T and r. The require-
ment of spherical symmetry is then the requirement that
for dT =0, dr =0 (i.e., at fixed T,r) distances are deter-
mined by

ds* =f(r,T)(d0> + sin’6 dg?) . (6.1)

So far we have asked nothing special of our coordinates 7
and 7. By being more demanding we can make Eq. (6.1)
look more familiar. We require that » and T are labels on
the surfaces such that f = r*, or

ds* = r’(df* +sin*0d¢?) . (6.2)

We are then geometrically fixing the meaning of r: it is the
surface label for which surface area = 4772 This coordi-
nate, the “Schwarzschild radial coordinate,” is geometri-
cally defined and is convenient for many purposes but it is
by no means forced on us by spherical symmetry.?

The question now is how to extend Eq. (6.2) for displace-
ments in which dT and dr are nonzero. The answer is

ds*= —A(r,T)dT?+ B(r,T)dP + C(r,T)drdT
+7(d67 +sin’0 dg?) . (6.3)

Many terms are missing in this formula. It is simple to
argue, for example, that there can be no dr d¢ term; such a
term would constitute a geometric distinction between in-
creasing and decreasing ¢ (positive or negative d¢ ) and
would be incompatible with spherical symmetry. Vari-
ations of this argument account for the omission of dr d6
terms, dT d¢ terms, and dT d6 terms.

Spherical symmetry does not require the absence of the
dr dT term. Rather, we can eliminate it by making yet an-
other demand on our coordinates. So far & and ¢ have been
geometrically fixed (except for trivial rotations) and r has
been fixed but nothing has been asked of 7. We now spe-
cialize T in such a way that the d7 dr term is banished.?*
With this termi gone we can rewrite the metric formula in
the very simple form

ds’ = — %2 dT? 4 ¥ dr* + rA(d6? + sin’0 dg ?)
(6.4)
where @ and A are functions of » and 7. But even now we

have not completely specialized the coordinates. We can
still make a transformation to a new time coordinate ¢ by

T=F(t) (6.5)

without ruining the pleasingly simple form of Eq. (6.4). (We
shall presently take advantage of this freedom.) It is appro-
priate to pause in the middle of these mathematical manip-
ulations and admire what a wondrous thing we have ac-
complished. Merely by invoking spherical symmetry—and
by imposing constraints on the coordinates—we have re-
duced the problem of finding a space-time geometry to that
of finding two functions, @ (r,£) and A (r,2).
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This is as far as we can go with symmetry arguments
alone. To find @ and A we need physics in the form of the
(vacuum) GRT field equations R,,, = 0. To find exphcltly
the differential equations that result from R,, =0 is
straightforward with Eqs. (4.22), (4.24), and (4. 32) but very
tedious. The resulting equations, however, are rather sim-
ple. From uv = Or we get

2 04
Ry =——= 6.
o= (6.6)
showing, surprisingly, that A is a function of  only. From
the other components of R,,, = 0 we find
~—2e‘2"-ai=i(l—e‘2"), (6.7)
ar r
20, = — i(1 — ). (6.8)
r

Equation (6.7) can immediately be solved to give
e M =1—r/r, (6.9)

where 7, , the “gravitational radius,” is an integration con-
stant. With this result Eq. (6.8) then gives

20 =1n(1 —r,/r) + 2K (T), (6.10)

where K (T') is an integration constant of Eq. (6.8). The
Schwarzschild geometry then is

ds* = — (1 —r,/NP*dT? + (1 —r,/n~" dr?
+ A(d67 + sin*0 dg?) . (6-11)

There is an arbitrary function K (T') because we still have
not “fixed” the meaning of the time coordinate. The best
choice of course is that of the time coordinate correspond-
ing to Minkowski time in the asymptotically flat geometry
at r— . To arrange this we use the freedom inherent in
Eq. (6.5) and choose

dF _K(T)

_=e

dt
so that the metric takes the form [cf. Eq. (2.17¢)]
s* = — (1 —r,/NEdt> +(1+r,/n~"dr
+ A(d6* +sin*0 dg?) . (6.13)

A rather remarkable feature of this result is worth em-
phasizing. There is no t dependence in the metric functions
of Eq. (6.13). It is, in this sense, static—the same at all . The
exterior geometry of a star then pays no attention to wheth-
er the star itself is static, oscillating, or collapsing. No
gravitational signal carries information about the dynami-
cal status of a gravitating spherical source. To make this
seem more plausible we should remember that in Sec. V we
saw that the effects of gravitational waves are transverse.
Any radially outgoing disturbance in the gravitational field
would therefore have to choose directions perpendicular to
the radial direction and this would violate the spherical
symmetry of the geometry. (Similar arguments explain
why time varying spherically symmetric charge distribu-
tions produce static exterior electric fields.)

, (6.12)

B, Interpretation of r,

The only characteristic of the exterior geometry that
tells anything about the source is the single parameter r,
the “gravitational radius.” We can take two approaches to
investigating its meaning. One possibility is to revert to the
nonvacuum field equations (4.28) and to relate r, to the
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stress-energy of the source. We take the second approach
and determine 7, operationally. To do this we need only
ask what the behav1or of distant test bodies will be in the
Schwarzschild geometry. In Sec. IV A we saw that in this
geometry circular timelike geodesics, e.g., planetary orbits,
have an angular frequency given by [Eq. (4.10)]

o’ =cr/2r. (6.14)

An astronomer studying a star (or whatever) infers its mass
by measuring its gravitational effect on distant bodies. If he
observes planets, in orbit about a star, with angular fre-
quency o at radius r, he will measure the mass to be w?/G.
In a Schwarzschild geometry he then measures a mass

M=c%r/2G. (6.15)
This is what we shall define as the mass of the source in the
Schwarzschild geometry. It corresponds to the familiar
Newtonian mass

My, = f (mass density)4sr” dr, (6.16)
only in the limit that space-time curvature is weak and the
material of the star is nonrelativistic in the sense of Sec.
V A. One further opportunity to check Eq. (6.15) and the
consistency of our arguments is offered by the weak field
limit (r»7,) of the metric functions. According to Eq.
(5.11}), and the discussion that precedes it, in this limit we
should have

Zoo= —1=2@/*= —1+r1,/r, (6.17)
sothat the Newtonian potential ® = — GM /rmustbe giv-
en by

D= —r,c*/2r, (6.18)

and r, must equal 2GM /c?, in agreement with Eq. (6.15).

C. Perihelion shift

A notorious non-Newtonian aspect of the Schwarzschild
geometry is the explanation of the anomalous perihelion
shift of the planet Mercury. We can derive this result by
first developing a very useful lemma. Suppose that in some
coordinate system the metric functlons 8, are not func-
tions of one of the coordinates,*® say x ®. For a timelike
geodesic describing free-particle motion, the covariant
component U, of the particle’s four-velocity is a constant.
(For spacelike and null geodesics the analogous result
holds.) The proof'is just a direct application of the geodesic
equation (4.4) written as

U, U"=0,
from which we have
v dU,
v, U =0, %=y rsur
’ U odr dr
=UUggl%,

= %Uauv(gda,v + ga’v,a - gav,a) .
Therefore for geodesic motion U, (7) obeys, in general,

du,

= = UV (6.19)

If the metric functions are independent of x, then
dU_/dr = 0 and U, is a constant along the geodesic. This
alsoimplies that p,, is a constant and in this form the lemma

applies also to photons.
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Let us now use this result in the study of nearly circular
orbits. The mathematical details will be much simpler if we
choose the orbit to be in the equatorial plane (6 = 7/2,
U? = 0). We can of course check that this is consistent with
the geodesic equation. It also involves no loss of generality
since we can always choose the @ = 7/2 surface to coincide
with the plane of the orbit. (These are the same assumptions
we used for circular orbits in Sec. IV A.) We can use our
lemma by noticing that the metric coefficients of (6.13) are
independent of both 7 and ¢, and hence that

r
UO=gOOU°=g00c£= —(l—i)cit—-——E/

dr r T
(6.20a)
d¢ d¢ _
U, =g,,Ut=g,, (E)='27?=J’ (6.20b)

where E and J are constants, called, respectively, the ener-
gy parameter and the angular momentum parameter, of
the orbit. We have furthermore U-U = — ¢? so that

C2 = _gOO([]o)2 _grr((/r)2 _g¢¢(U¢)2
= —g"(Uy)* g, (U} —g*(U,)

(-5 -3 G -
(6.21)

Equations (6.20) and (6.21) give us three equations for the
unknown functions ¢ (), ¢ (), A7) so we need never write
down the geodesic equation. We have already used the geo-
desic equation, as much as we need to, by finding that U,
and U, are constants. The lemma has indeed been useful. It
has eliminated the need to deal with the second-order dif-
ferential equations given by the geodesic equation, and has
allowed us immediately to find three first integrals of those
equations.

We are not really interested here in ¢ (7-) & (7), r(7) but
rather in the shape of the orbit, so we can ignore Eq. (6.20a)
and use (6.20b) to write

dr _dr d¢ _
dr d¢ dr
in Eq. (6.21). We next follow the standard trick of Newtoni-
an orbital calculations by using the variable
u=l1/r
rather than 7 itself. Equation (6.21) then takes the form
du* , E*—¢* ¢ 3
) T T TR TRt
The result becomes even more familiar if we differentiate
by ¢ and replace r, according to Eq. (6.15)

d*u GM  3GM?

d ¢ 2 t+u J 2 + c2
If we identify J as angular momentum per unit mass then
Eq. (6.22) is just the Newtonian orbit equation except for
the last term on the right-hand side, the GRT correction.
[Equation (6.22) is treated in several undergraduate me-
chanics books.?®] For nearly circular orbit the radius of the
orbit is almost constant

u=uy=1/r,,

(6.22)

and we write

u=u,+u,
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where 4’ €u,. The orbital equation (6.22), to first order in
u',is

d*u' GM 3IGM 6GM
u = + u' . (6.23)
d¢ 2 + J2 6'2"%
If we define
y=(1- 6GM /ric))'?s, (6.24)

the equation simplifies to
dzu' o (GM + 3GM)/(1 _ 6GM)
d¢2 22 rec® /)’
which has solutions of the form
u'=A+ Bcosy + Csiny.

The angular distance A¢ from one periastron to the next as
shown in Fig. 8 is given by

Ay =21 =(1—6GM /ryc?)'?A¢ . (6.25)
For a nearly Newtonian orbit with r,»7, we have

GM /ryc*«1,
50 that

Ap=2m(1 4+ 3GM /r,c?) . (6.26)

For a nearly circular nearly Newtonian orbit, like that of
Mercury, the periastron advance is therefore

6mGM /ryc? rad/ orbit .

For Mercury’s orbital radius {r, = 2.0X 10'? cm) and the
sun’s mass (M = 2.0X 10** g) this predicts an advance of
Mercury’s perihelion by 4.8 X 10~ rad per orbit or 40 arc-
sec per century.

D. Gravitational red shift

Our intuition tells us that as a particle rises against the
pull of gravity it loses (nongravitational) energy. How is
this described in the mathematics of GRT? The answer
starts with Eq. (3.11), which tells us that an observer with
four-velocity U, will measure a particle (or photon) with
four-momentum p to have observed energy — p-U,,,, . This
results is based on considerations of local measurements
and local frames but it is a scalar result and therefore gives

Fig. 8. General relativistic advance of the periastron of a planet. The
periastron advance per orbit § shown here is 0.19 rad per orbit, much
larger than that of Mercury (4.8 X 10~ 7 rad per orbit).
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the same numerical answer for evaluation in any frame. Let
us now consider an observer “sitting still” in the Schwarzs-
child geometry at some fixed value of r,8,4. Since
dr =d@ =d¢ =0 the only nonzero component (in the
Schwarzschild coordinate basis) of his four- ve1001ty isUS,..
To satisfy this requirement that U.U = — ¢? this compo-
nent must be

Ubee =c(1 —r,/r)" V2. (6.27)

This observer, of course, is not following a geodesic; Eq.
(6.27) does not satisfy the geodesic equation (4.4). He needs
a rocket, or something, to remain “sitting still” against the
“pull” of gravity. If a particle (free or accelerating) with
four-momentum Pp passes this observer he will measure its
energy to be

E= _p'uobs = _Py U‘gbs = —C(l —rx/r)_llzpo

(6.28)

If the particle is free (no influence except gravity) then
according to our lemma following Eq. (6.19) p, is a con-
stant. Equation (6.28) then gives us a simple equation for
locally measured energy as a function of . In particular,
two observers, one at 7, and one at r, will measure energies
related by

E, (1—r/r)'"?

E,  (1—r/n)"
Clearly if 7, > r, the measurement at 7, reveals less energy
than at »,. It is in this sense that the free-particle loses
energy as it moves outward, or gains energy as it falls in-

ward. If the outer observer is at « (e.g., an astronomer at
ry,>r,, and r, >r,) then Eq. (6.29) simplifies to

E /E,=(1—r/r,)">.

(6.29)

(6.30)

If a particle fights its way out against gravity from, to «,
Eq. (6.30) gives the fraction of its energy it loses. In the
nonrelativistic 11m1t (slow partlcle motion; r»r, ) the parti-
cle energy is ~mc?, where m is the particle rest mass, SO
that the energy lost is roughly

(1 —r,/r,)'Pmc* — mP~ — )(r, /1, )mc?

~—~(GM/r,)m,
in accordance with Newtonian theory.

A more interesting application of Eq. (6.30)is to consider
a photon of frequency v, produced at radius 7, . An observ-
er sitting still at 7, could, for example, produce such a pho-
ton as the result of an atomic transition. The frequency v,
is the frequency he measures and the frequency that we
normally associate with that transition neglecting gravity.
From Egq. (6.30) the frequency observed at « will be given
by

v = v (1 —r,/r)"2. (6.31)

The “‘red shift” z of a photon is defined in terms of emitted
wavelength A,(=c/v,) and observed wavelength
A (=c/v_ ). The gravitational red shift in the Schwarzs-
child geometry is

Ap —Aa 1

A (L—r/r,)?

Itis appropriate that the Planck constant / does not appear
in any of these results since they have nothing to do with

the quantum nature of light. The idea of photons with ener-
gy hv is expedient, but not necessary.

(6.32)

Z=
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The above derivation of the red shift is concise but it does
not address a disturbing question: Suppose radiation is
emitted at a constant rate outward from 7, . Since the fre-
quency at which waves are received at r, > r, is less than
the frequency of emission at 7,, don’t waves have to “pile
up” in the region between the two radii? The answer to this
question clarifies the meaning of the measurement process
and the several different meanings of “time.” Let two wave
fronts of a light beam be emitted from radius 7, at coordi-
nate times ¢, and #,. Since the geometry itself is independent
of t it must require the same “travel time,” call it ¢, , for
each wave front to arrive at 7, . It follows that the difference

At =t, —t,

between emission times for the wave fronts at 7, is the same
as the difference

Atb = (tZ + ttrav) — (tl + ttrav) = t2 - tl

between reception times at 7, . The period of the wave mea-
sured in *‘t time” is the same at r, and r, . If this were not
true waves would pile up in the intermediate region.

The coordinate time ¢, however, is not the time measured
by the clocks of the observers measuring the waves’ param-
eters. Their clocks measure proper time of the observers,
related to coordinate time by

dt
o UG -
The observers at different radii will see the same Az for the
wave fronts, hence they must observe different proper time

intervals A7, , A7,. The ratio of measured frequencies will
then be

(6.33)

V_b _ AT (Ugbs )b

(Uobs )

In the case of an observer “sitting still” in the Schwarzs-
child geometry Eq. (6.27) applies and Eq. (6.34) agrees with
our previous result, Eq. (6.29).

(6.34)
v, A'r,,

D. Blacek holes

There is an expected and an unexpected pathology in the
Schwarzschild metric, Eq. (6.13). At 7 = 0, presumably the
location of the “point mass” curving space-time, the metric
coefficients are ill behaved. We of course expect pathologi-
cal effects there and we are not disappointed. These patho-
logies are real; an observer falling into the neighborhood of
r = 0 experiences unboundedly large tidal forces. The pa-
thology at r = r, is rather different. Whatever it is, we do
not have to worry about it in common sense astronomy
since r, is too small. For the sun as an example

= (2G /c?) X solar mass = 3 km, whereas the radius of
the sun itself is 7 < 10° km. The Schwarzschild metric ap-
plies only in the source-free reglon outside the sun so the
strangeness of the metric at r = r, is irrelevant. Neverthe-
less it is important, at least in prmclple, to understand thls
feature of the geometry. It is interesting that Laplace®’
1796 noticed something strange about 7 = r,. The Newto-
nian escape velocity from radius 7, is

escape 26M /r (635)

At a sufficiently small radius, Laplace argued, the escape
velocity will be the velocity of hght That radius is given
according to Eq. (6.35)by 2GM /c?, the grav1tat10nal radius
r,- Laplace must have been correct in some sense since Eq.

2
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(6.30) tells us that a photon escaping from 7, = r, reaches
« with zero frequency, which is to say in some sense it
doesn’t reach oo at all. Equation (6.29) in fact tells us that a
photon from r, = r, can never reach any larger radius with
finite energy.>®

It is far from clear what all this means. There is some-
thing decidedly strange about 7 = r,, but how strange? Our
musings so far suggest that the geometry is singular at
r = r,; the metric coefficients, after all, are singular there.
There is, however, an alternative to this drastic conclusion:
the pathology of the metric coefficients may be a coordi-
nate effect.?” A simple example of such a coordinate pa-
thology occurs for the two-dimensional spatial geometry

(dsP =X "*dX) + YdY)*. (6.36)
This would seem to describe a very exotic geometry with
pathological behavior at X = 0 and at ¥ = 0. Such a con-

clusion is an embarrassment once we make the coordinate
transformation

X=4x72, Y=(3pP"
with which Eq. (6.35) reduces to
(ds)? = (dx)* + (dy)*,

the familiar, completely nonpathological, two-dimensional
Euclidean geometry. The problem with the metric of (6.36)
is the deceptive choice of coordinates. We cannot a priori be
certain that the pathology in the metric of Eq. (6.13) is not
also, at least partially, due to a deceptive coordinate choice.
There must of course be something strange about 7 =r,
‘since the infinite red shift predicted by Eq. (6.29) is a co-
ordinate-independent prediction.

The idea that the Schwarzschild coordinates could be
deceptive is disturbing since these coordinates are so solid-
ly based on geometrical and physical considerations. The r,
6, ¢ coordinates are directly defined via spherical symme-
try; the # coordinate is the choice of time coordinate that
expresses the static nature of the geometry. Can such co-
ordinates be deceptive? Our confusion at this point reflects
to a small degree the confusion and controversy that still
existed until relatively recently (the 1960s) about the nature
ofr=r,.

Let us take a look at an argument that suggests that there
is something misrepresentative about the Schwarzschild
coordinates at r = r,. We will consider a particle in radial
free fall. (“‘Radial’’ means d@ =d¢ =0 so that
U? = U*? = 0 for the particle worldline.) From the r com-
ponent of the geodesic equation (4.4) we have

vr,ue=U0,U*+UUT,,

dU’ 0nN2pr orrrpr
=——+4 (UG +2U0°UTS,
dr
+(UT,, .
With the I"’s listed in the Appendix and U'==dr/dr this
becomes

£ o2 ]

The terms in square brackets [ ] are just
— 8oV’ —8,(U)= —UU=¢,
so that the equation simplifies to
d’r rec’ GM
v (€37}
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which has precisely the appearance of the analogous New-
tonian result. Most important, it shows no strange behav-
ior at r =r,. According to this equation a free particle
starting at rest will fall from any finite radiusto7 =7, ina
finite proper time and will continue on inward to smaller
radii. The time component, U°, U =0, of the geodesic
equation, on the other hand, tells us

d’_ (i’_)(i‘_)fg_(l_’_&)*l
dr? dr/\dr/ » r ’

which again shows something peculiar about r = r,. A si-
multaneous solution of Eqgs. (6.37) and (6.38) (simplest case:
dr/dr = 0atr = «)revealsin fact that t— co as »—7,. The
falling particle reaches r =7, at finite proper time 7 but
infinite coordinate time t. An interesting analogy can be
drawn to the Y = constant geodesic in the metric of Eq.
(6.36). From X = X, to X = oo is an infinite X coordinate
distance, but the real distance, i.e., §ds, is 2(X,) ~'/2 Rea-
soning by analogy we are tempted to conclude that the
Schwarzschild coordinates are indeed poorly suited to the
description of the geometry at the Schwarzschild radius.

The real proof that the Schwarzschild coordinates are
the problem is the presentation of a coordinate system in
which the metric coefficients are well behaved at r =r,.
Several such coordinate systems have indeed been found.
These coordinate systems all retain the 6,¢ coordinates
that are natural coordinates for spherical symmetry, but
replace 7 and ¢. The coordinate system in which the real
nature of r =r, is clearest is the Kruskal-Szekeres sys-
tem?® introduced in 1960. In this system 7 and ¢ are re-
placed by u,v defined through the coordinate
transformation

(6.38)

(r/r, — 1) =u? — v, (6.39a)
g
t=(r,/cin|212] (6.39b)
u—v

In these coordinates the metric for the Schwarzschild ge-
ometry takes on the form

4r
ds’ = —L o~ ""(du? — dv®) + rd8? + sin*0 dg ),

.
(6.40)

where 7 is regarded not as a coordinate but rather as the
function of u and v defined in Eq. (6.39a). This is straight-
forward to verify: When Eqs. (6.39) are used in Eq. (6.40)
the metric of Eq. (6.13) is recovered, thus Eqgs. (6.40) and
(6.13) must represent the same space-time in different co-
ordinates. The metric of Eq. (6.40) has no pathologies at
u=uy, ie, at r=r,, but only at > —v*= —1, i.e, at
r = 0. This demonstrates conclusively that the space-time
geometry is nonpathological at r = 7, . The pathological ap-
pearance of the metric coefficients of Eq. (6.13) at r =, is
due to the pathological nature of r,f coordinates there.

There is a rather surprising feature of Eq. (6.40): for ev-
ery value of r, there are two values of u,v. For example,
r/r, =1.6035457... and ct /r, =1n3 = 1.0986.. . . cor-
responds bothtou =2, v=1andtou= —2,v= — 1.
The relationship between u,v and r,t coordinates is shown
in Fig. 9. The u,v coordinates are plotted horizontally and
vertically and the curves for constant » and constant ¢ are
indicated; the dark hyperbolas at v> — u? =1 represent
r = 0, the boundary of the geometry.

A great convenience of Kruskal-Szekeres coordinates is
that it is easy to identify graphically the nature of a radial
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Fig. 9. Comparison of Schwarzschild and Kruskal-Szekeres coordinates.
In (a) the hyperbolas representing constant radius curves are shown and
are labeled with the value of 7/r,. In (b) straight lines representing con-

stant ¢ are shown and are labeled with the value of ¢t /7, .

(d8 = d¢ = 0) displacement. It is clear from Eq. (6.40) that
a radial displacement is timelike, lightlike, or spacelike if
the ratio |dv|/|du| is greater than, equal to, or less than
unity. Figure 9 then shows why the original 7,7 coordinates
are deceptive. For the r <, region, # is a spacelike coordi-
nate and r is a timelike coordinate! From Eq. (6.40) it is also
clear that a displacement, radial or not, is spacelike if
|dv| < |du]. Since particle and photon worldlines must be
nowhere spacelike, particle or photon worldlines drawn on
the Kruskal-Szekeres graph must always make an angle
less than 45° with the vertical.

In Fig. 10 a worldline is drawn representing a particle
falling inward from large radius in region I (r>r,, 4>0) of
the geometry, across r =r, into region II (r<r,, v>0).
From this figure and the necessity for worldlines to be
“more vertical than horizontal” we are forced to some fas-
cinating conclusions. A particle once having moved inward
across r = r, must inevitably reach r = 0. Regardless of its

Fig. 10. Timelike worldline shown in a Kruskal-Szekeres graph. If the
worldline represents the surface of a collapsing spherical body only the
region of the graph to the right of the worldline applies.
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acceleration it can never return to the r>7, region of
space-time. Furthermore, any “information” (particles,
photons, etc.) it emits also unavoidably proceeds to smaller
and smaller radii and cannot ever reach the » > r, region of
space-time. Since any event in region II will remain forever
unknown to observers in the asymptotically fiat region I,
the r = r, boundary of region II is called an “event hori-
zon,” a horizon across which distant observers cannot see.
The region interior to 7 = r, from which no particle, no
information, and no light can emerge is called, with obvi-
ous justification, a “black hole.”

It remains to explain the strange topology of spacetime
suggested by the Kruskal-Szekeres graphs. Why are there
two asymptotically flat regions, I and III, and why are there
two r <r, regions, Il and IV? First, we can take a no-non-
sense common-sense view of the question and consider how
a black hole forms. Ordinary stars, star clusters, galaxies,
etc. are characterized by a surface radius Ry much bigger
than 2GM /c*. For such an astronomical body we can draw
the hyperbola in region I of Fig. 9 representing » = R and
ignore everything to the left. For ¥ < R, points are inside
the star, etc. and the Schwarzschild geometry (a vacuum
solution of the GRT equations) does not apply. For a black
hole to form, a star (or whatever) must collapse. Let us
suppose that the worldline drawn in Fig. 10 is the worldline
of the surface of a collapsing spherical star. Once the
worldline passes r =r, (i.e., once the star has collapsed
beyond the point that its surface radius equals 2GM /c?)itis
clear from Fig. 10 that complete gravitational collapse to
r = 0 is absolutely unavoidable. Every particle of the sur-
face, after all moves on a worldline of the exterior
Schwarzschild geometry. No matter what internal pres-
sure forces are generated in the star it must completely
collapse. But the worldline of the surface of the star is the
boundary between matter and vacuum, so only the region
of Fig. 10 to the right of the worldline is valid. Regions III
and IV do not exist.

For astrophysical formation of black holes the issue of
regions ITI and IV is evaded but the geometry of Eq. {6.40),
for all values of u,v corresponding to >0, is after all a
solution to the spherically symmetric field equations. Can
it have any physical meaning? In principle, it can. We can
imagine a universe in which the geometry with all four of its
regions doesn’t form but simply is. The spherically sym-
metric curved geometry must be built in from the begin-
ning. The black hole must exist at all times in the universe
(a “primordial black hole”). Such a universe would have
two different asymptotically flat regions, I and III connect-
ed in some sense by the geometry in the region of small u
and v. This connection, sometimes called the “Einstein—
Rosen bridge,” is related to a subject that is a frequent plot
necessity in science fiction®': beating the speed-of-light lim-
it on travel to distant stars.

The Einstein~Rosen bridge is not quite what a science
fiction writer would want. It connects two essentially dif-
ferent asymptotically flat “universes”—or two region of
the same universe, since regions I and III can be imagined
to be connected also at large radius. It does not, however,
provide a useful plot device. It is clear in the Kruskal-
Szekeres graph that timelike lines cannot extend between
regions I and IIL. Astronauts therefore cannot rocket
across the Einstein-Rosen bridge to invade distant star
systems.

We have been exclusively discussing so far only one par-
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ticular black hole solution, the Schwarzschild black hole.
A black hole can more generally be defined as a space-time
geometry with a nonsingular event horizon, i.e., a geomet-
rically smooth boundary across which information cannot
pass outward to an asymptotically flat region. Solutions
can also be found representing black holes with electric
charge and with spin (angular momentum). These black
hole solutions have space-time topologies even more fan-
tastic than the four region structure of the Schwarzschild
solution. As in the case of Schwarzschild black holes these
exotic topologies are irrelevant if the black hole forms by
collapse of an astronomical body. If the more general black
holes are primordial features of a universe, however, there
are bridges across which timelike world lines can pass from
one asymptotically flat region to another. It is perhaps a
sign of the good taste built into the mathematical structure
of GRT that recent research®? indicates that such bridges
are unstable and cannot exist even for a primordial black
hole.
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APPENDIX

Here we supply a derivation of Eq. (3.45), omitted in Sec.
III C, and in the process justify a few other useful results.
The pattern of proof, to be used several times is this: (i) A
tensor equation is written down. Since the equation is ten-
sorial its truth or falsity can be tested in any basis system.
(ii) The most convenient system for such a test is the LF
coordinate basis at some point. In this system the Christof-
fel symbols vanish (since de, = 0). (iii) With the truth of
the equation established in one basis, it is established in all
basis systems. Its implications in a general (non-LF) co-
ordinate basis then lead to results about Christoffel
symbols.

Our first task will be to verify Eq. (3.42). To this end we
write

(grad v)/.wEVp;v = V,u,v - V,{M;};v

and seek to prove that M and I' are the same. This can be
done by considering the equation:

(grad A-B), = (4,B"), =4, B*+A,B%, . (Al)
Now (A-B) is a scalar so the components of its gradient in
any coordinate basis are
(grad A-B), =(AB), = (4,B"), =4, ,B" +A4,B%, .

(A2)
We now note that in an LF basis at a point, Eqgs. (A1) and
(A2) agree, hence Eq. (A1) must be true since it is tensorial.
(True in one basis means true in all.) But Eq. (A1), expand-
ed, tells us

(grad AB), =4, ,B* +A4,B*, — A, M/ B*

+A4,B'T%, .
This can only be compatible with Eq. (A2), for all A and B,
if M., =I', and, hence, if Eq. (3.42) is correct.

The next step is to use this result to examine
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Viw = Vi =0 (A3)
in the special case that V is the gradient of a scalar field ¥:

V,=(grad¥), =¥, .

Equation (A3) then reads
Viw =Veu =Vio = Vo — VIt + v,rs,

= ¢,y,v - ¢,v,y + ¢,A (Fﬁv - réy ‘
=@, —TI%). (A4).

The left-hand side of Eq. (A3) is a tensor, hence, the final
line of Eq. (A4) must be a tensor. This tensor vanishes in an
LF coordinate basis and, hence, in any coordinate basis,
and thus

r., =ri,. , (AS)
[This was already noted in Sec. III C, but as a consequence
of Eq. (3.45), which still awaits proof.]

In Sec. I1I C it was shown [without the use of Eq. (3.45)]
with an argument based on LF coordinates that the gradi-

ent of the metric tensor is always zero [Eq. (3.46)]. It fol-
lows that

}8aua + 8urs — 8vou) =0.
When this is expanded in an arbitrary coordinate basis four
of the six I"’s involved cancel [with the application of Eq.
{AS5)] and we are left with

Y8puy + 8uvs — &) = ol 3 + I'%).

We next multiply this equation by g * (and sum on u) to
find

18 @puy + 8urs —grﬁ.ﬂ) =g“”g,,#1‘§, = 5zr;r

= FZY )
thereby proving Eq. (3.45).

For the Schwarzschild geometry [Eqgs. (2.17e) and (6.13)]
with coordinates 7,0,¢ and x°=ct, it is straightforward to
compute the Christoffel symbols with Eq. {3.45). The only
nonvanishing I"’s turn out to be

F(O)r=ro=_

rj, = —sinfcos.

' An incomplete list of the more recent texts is Charles W. Misner, Kip S.
Thorne, and John Archibald Wheeler, Gravitation (Freeman, San Fran-
cisco, 1973); Steven Weinberg, Gravitation and Cosmology (Wiley, New
York, 1972); Ronald Adler, Maurice Bazin, and Menahem Schiffer, In-
troduction to General Relativity (McGraw-Hill, New York, 1965); Hans
C. Ohanian, Gravitation and Spacetime (Norton, New York, 1976).
Among the shorter or less detailed texts, Wolfgang Rindler, Essential
Relativity: Special, General, and Cosmological (Van Nostrand, New
York, 1969) is notable for the emphasis on physical ideas; J. Foster and J.
D. Nightingale, 4 Short Course in General Relativity (Longman, Lon-
don, 1979) gives a compact overview; the second half of L. D. Landau
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and E. M. Lifschitz, The Classical Theory of Fields, 4th ed. (Pergamon,
New York, 1975) contains a concise development of GRT.

2A somewhat similar approach is taken in Sec. 3.4 of Melvin Schwartz,
Principles of Electrodynamics (McGraw-Hill, New York, 1972).

3Here the equations are given in the Lorentz gauge and we gloss over the
possibility that the equations could have any other appearance. The issue
of gauge transformations, not very relevant here, is discussed in Sec. V.

“Recent measurements have confirmed the weak equivalence principle to
better than one part in 10'2, For a summary and discussion of experi-
mental evidence see, e.g., Sec. 1.5 of Ohanian or Box 1.2 of Misner,
Thorne, and Wheeler (Ref. 1). The “weak” equivalence principle tells us
that the paths of nonspinning point particles cannot be used to distin-
guish locally between gravitational fields and accelerated frames. The
“strong” equivalence principle states that no local physical measure-
ment whatever can be used to make this distinction. Whether or not the
strong equivalence principle is embodied in GRT is a somewhat seman-
tic but controversial question. Contrast, for example, Ohanian Sec. 1.7
with Misner, Thorne, and Wheeler, Sec. 16.2.

3See, for example, R. P. Feynman, Lectures on Gravitation, unpublished
lecture notes prepared by Fernando B. Morinigo and William G. Wag-
ner, California Institute of Technology, 1963. For other references see

Sec. 7.1 or Sec. 18.1 of Misner, Thorne, and Wheeler (Ref. 1).

$Clearly in the metric formula any antisymmetric part (g,,, — &.,,) of the
metric coefficients is unimportant. In some unified field theories—the-

ories that combine electromagnetism and gravity—the antisymmetric
part of the metric coefficients is used to carry information about the
electromagnetic field. Einstein first proposed such a theory thirty years
ago. See, e.g., A. Einstein, The Meaning of Relativity (Princeton, New
Jersey, 1955), Appendix II. There have been several modified version of
such a theory proposed in the ensuing years but no wholly successful
one.

"The reader expecting “minimum” rather than “extremal” deserves an
explanation. In flat space-time straight worldlines are in fact the curves
of maximum length (i.e., proper time) between two events with a timelike
separatjon; an accelerated observer traveling between these two events
always measures a smaller clock time. Straight lines between events with
spacelike separation are the curves of minimum length. In any case, in
curved space(time) it is not even true that geodesics are always curves of
extremal length. On the surface of the Earth (idealized as a perfect
sphere) any segment of a great circle is a geodesic. The ~40 000-km
great circle to New York, starting northward from Montreal, is there-
fore a geodesic, though it is neither a minimum nor a maximum with
respect to small deviations of the path. The geodesic equation is a neces-
sary condition for an extremal path, but not a sufficient one.

8In view of this it is interesting that some physics teachers consider the
expression “centrifugal force” to be obscene, but have no reluctance to
talk about weight.

°It is difficult to give simple examples of the difference of the Ricci and
the Riemann measures of curvature. Curvature is simply visualizable

only for two-dimensional spaces. But in two- and three-dimensional spa-
ce(time)s it turns out that Riemann curvature must vanish if Ricci curva-
ture vanishes. We live in the smallest number (4) of dimensions in which
GRT can work.

19The almost exclusive use of coordinate basis systems is a concession to
the length of this article. Many results are more easily achieved or un-
derstood with noncoordinate basis systems. It should be noted that the
usual basis systems of physicists, for spherical or cylindrical coordinates
in flat three-dimensional space, are orthonormal systems, rather than
coordinate basis systems.

'Some authors, especially of older works, use {#z} in place of I"45.

12An example suffices to prove this: In two-dimensional flat space the
basis vectors @,, @, are not constant and so the values I" 55, etc. cannot

all be zero. If these were tensor components they could not then all be
zero in any basis. But the Cartesian basis vectors e, , @ , for two-dimen-
sional flat space are constant and hence I}, etc., are all zero.

13Some authors use a vertical bar rather than semicolon (V).

“More generally, an affine parameter is one that puts the geodesic equa-
tion in the form of Eq. (4.5). If a nonaffine parameter, e.g, A =17 2 is
used extra terms are generated as in the right-hand side of Eq. (2.30).
Proper time is always an affine parameter for timelike curves.
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">The left-hand side of this equation is often called the components of the
Einstein tensor G, thatis G,,=R,,, — 1g,..R.

'*The influence of curvature on particle dynamics may be summarized in
the statement that there is no local influence on the dynamics of (non-
spinning) particles. Particle dynamics, however, is not all of dynamics.
We need also to know how fields (e.g., the electromagnetic field) are
influenced by curvature. The answer is the same: no local influence of
curvature. This general lack of gravitational effects on the dynamics of
all (nongravitational) forms of stress-energy turns out to be mathemat-
ically summarizes by 7+, = 0.

"This is somewhat similar to the situation in electromagnetism where a
gauge choice for A must be made before a solution for A can be found.
The constraints imposed on the g,, are also called a gauge choice. A
particular gauge choice in the case of weak fields is discussed in Sec. V.

'¥The Newtonian limit in this case requires an additional assumption, that
mass-energy density is much larger than the stresses in the source. In a
microscopic picture this turns out to mean among other things that the
particles constituting the material of the source are moving at nonrelati-
vistic velocities, and the sound speed in the material is small compared
toc.

At this point the traditional approach would be first to make a further
simplification in Eq. (5.21). The gauge freedom is not completely ex-
hausted by Eq. (5.19), nor is it exhausted in electrodynamics by Eq.
{5.17). The remaining gauge freedom can be used to simplify the math-
ematical descriPtion of E_he waves_by fixing all the components of , v 10
vanish except 4, , and 4,, = — h, . [For details see Landau and Lifs-
chitz, Sec. 108, or Misner, Thorne, and Wheeler, Sec. 35.4 (Ref. 1).] We
shall not need this simplification.

2Richard A. Isaacson, Phys. Rev. 166, 1272 (1968). See also the discus-
sion in Secs. (35.13)~35.15) of Misner, Thorne, and Wheeler (Ref. 1).

2K arl Schwarzschild, Sitzber. Deut. Akad. Wiss. Berlin K1. Math.-Phys.
189 (1916).

22The symmetry argument here is meant to be plausible and persuasive;
omission of detail and rigor here are concessions to conciseness. A more
complete discussion can be found in Misner, Thorne, and Wheeler, Box
23.3 (Ref. 1).

For example, any function of 7 could serve just as well as a radial coordi-
nate. One such change in radius results in “isotropic coordinates,”
which simplify several calculations [see, e.g., pp. 284-285 of Ohanian
(Ref. 1)]. A more general “mixing” of time and radius is involved in the
Kruskal-Szekeres coordinates, introduced in Sec. VI D.

4This is accomplished with a coordinate transformation 7= F(T',r). If F
is chosen to satisfy F, = C /24 nodT’ drappears in the metric formula
and T is our “special” time coordinate.

25The nonappearance of x ® in the metric functions is an indication that
the geometry is symmetric in some way. A formalism, that of “Killing
vectors,” exists for describing such symmetries without the need of a
special coordinate system. See, e.g., Sec. 13.1 of Weinberg (Ref. 1).

26For example, see Jerry B. Marion, Classical Dynamics of Particles and
Systems (Academic, New York, 1965), Sec. 10.10.

27Pierre-Simon Laplace, Le Systéme du monde (Paris, 1796), Vol. I1.

28 aplace’s argument cannot be taken too seriously since it is a prediction
about light in a strong gravitational field, made in ignorance of SRT
restrictions on light and of GRT modifications of strong fields. La-
place’s result for the “no-escape radivs” seems less impressive when it is
realized that GM /c? is the only combination of parameters that is di-
mensionally a radius. His “precisely correct” prediction 2GM /¢* for the
no-escape radius agrees with GRT only when radius is interpreted as
“Schwarzschild radial coordinate.” With another useful radial coordi-
nate (that of isotropic coordinates) the no-escape radius is §GM /¢,

9]¢ might seem that a coordinate pathology could be distinguished from a
geometric pathology with an examination of the Riemann tensor, a co-
ordinate independent quantity. The difficulty with this viewpoint is that
we calculate components of the Riemann tensor. If the coordinate sys-
tem itself is pathological we might expect the coordinate basis vectors
and, hence, tensor components to be pathological, even if the tensor
itself is unrelated to a geometric or physical pathology. The singular
behavior of the Riemann component in Eq. {4.23) is, therefore, not
strong evidence for a coordinate singularity at r,. There is a way around
this difficulty, in principle. A “foolproof” recipe can be given for con-
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structing locally flat coordinates at a point. If the recipe succeeds it
produces coordinates guaranteed to be nonpathological near the point.
Ifit fails it unambiguously signals the presence of a geometric singular-
ity at the point. Such a method has been used to show that » = Ois trulya
curvature singularity. [Lawrence Mysak and George Szekeres, Can. J.
Phys. 44, 617 (1965)). To deal with r = r, there are easier ways.

Energy waste in a university building

Neil J. Numark and Albert A. Bartlett

Djscovered independently by M. D. Kruskal, Phys. Rev. 119, 1743
(1960) and G. Szekeres, Publ. Mat. Debrecen 7, 285 (1960).

31§ometimes difficult to distinguish from “science” in black hole physics.

32yekta Giirsel, Igor D. Novikov, Vernon D. Sandberg, and A. A. Staro-
binsky, Phys. Rev. D 20, 1260 (1979); J. M. McNamara, Proc. R. Soc.
London A 358, 499 (1978).
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Interesting physics problems that can be used as examples in introductory physics courses
relating to the waste of thermal energy can be found in the mechanical systems of campus
buildings. The design of these wasteful systems may represent the “state of the art” as it existed
just a few years ago, so such examples are probably abundant. Our Student Recreation Center was
opened in 1973. It has an ice skating rink with the associated large refrigeration system. Simple
calculations using elementary thermodynamics applied to this system show that the heat rejected
by the system is roughly a quarter of a megawatt, which is approximately the average thermal
power needed to heat water for the showers in the building. An outcome of this student project is
the recommendation that the rejected heat be used to heat (or preheat) the shower water at an
estimated annual saving of $40 000 in current energy costs.

Mechanical systems for the heating and cooling of build-
ings consume large quantities of energy. Until recently it
was thought to be less expensive to build systems that waste
energy than it was to invest in systems that conserve and
reuse energy. The rapid escalation of energy prices has
changed all this and the earlier systems that waste energy
are now prime candidates for energy saving redesign and
retrofit. The physics involved in understanding the sys-
tems, how they waste energy, and what is needed to im-
prove them, is elementary and can be used very effectively
in beginning physics classes.

An example is the Student Recreation Building of the
University of Colorado in Boulder (Fig. 1). This new build-
ing contains all manner of recreation facilities including
swimming pools and an ice skating rink (26 X 56 m). We
wish to focus our attention on the large refrigeration sys-
tem that maintains the ice in the skating rink. Three com-
pressors, each driven by a 56-kW electric motor (75 hp) are
the heart of the refrigeration system. Typically only two are
running at any one time at an estimated 90% of peak capac-
ity and the third is on standby. Thus the steady-state elec-
trical power consumption of this system is approximately
2X0.9X75%0.746 = 1.0X 10* kW. The energy flow dia-
gram is shown in Fig. 2. The power extracted from cold
reservoir is P_, the power delivered by motors to operate
the refrigeration cycle is P, = 1.0X 10 kW, and P, is the
power delivered to the warm reservoir. The numerical cal-
culations that follow are very rough ( + 20%) so we can
ignore the power loss in motors. From the first law of
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thermodynamics,
P,=P, +P,. (1)

The coefficient of performance C, of a refrigeration system
is

C,=P,/P,=P./(P, —P,). 2)

Fig. 1. Student Recreation Center of the University of Colorado at Boul-
der. This building was completed in 1973 at a cost of $4.9 million. The
location of the snow on the roof of the building is an interesting thermal
pattern. Even though the roof has some insulation, snow has melted ev-
erywhere except on that part of the roof that is directly over the ice skating
rink. The faint cloud of steam that is drifting to the left is from the waste
heat that is discussed in this article.
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