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Gravitational waves on the back of an envelope

Bernard F. Schutz?

Department of Physics, Washington University, St. Louis, Missouri 63130
(Received 20 June 1983; accepted for publication 25 July 1983)

Using only Newtonian gravity and a little special relativity we calculate most of the important
effects of gravitational radiation, with results very close to the predictions of full general relativity
theory. Used with care, this approach gives helpful back-of-the-envelope derivations of important
equations and estimates, and it can help to teach gravitational wave phenomena to
undergraduates and others not expert in general relativity. We use it to derive the following: the
quadrupole approximation for the amplitude 4 of gravitational waves; a simple upper bound on 4
in terms of the Newtonian gravitational field of the source; the energy flux in the waves, the
luminosity of the source (called the “quadrupole formula”), and the radiation reaction in the
source; order-of-magnitude estimates for radiation from supernovae and binary star systems; and
the rate of change of the orbital period of the binary pulsar system. Where our simple results differ
from those of general relativity we quote the relativistic ones as well. We finish with a derivation of
the principles of detecting gravitational waves, and we discuss the principal types of detectors
under construction and the major limitations on their sensitivity.

L. INTRODUCTION

In recent years gravitational radiation has assumed new
importance in astronomy, with the observation' of its ef-
fects in the binary system containing the pulsar
PSR1913 + 16 and the inference® that the same effects
control cataclysmic variables. In the near future this im-
portance will increase as the next generation of ultrasensi-
tive gravitational wave detectors either observes or places
useful upper limits on the radiation from supernova explo-
sions. Although gravitational radiation is one of the conse-
quences of general relativity, it is not necessary to under-
stand general relativity in order to understand what this
radiation is and to derive order-of-magnitude estimates of
its effects. The aim of this paper is to show how to derive
these effects from nothing more than a knowledge of New-
tonian gravity and a little special relativity,® and to develop
formulas suitable for “back-of-the-envelope” estimates of
the size of important numbers. (These formulas are high-
lighted by the symbol 4 on the left-hand margin.) In most
cases the results are very close to the predictions of general
relativity; this is testimony to the fact that Einstein stuck as
close to Newtonian theory as special relativity and the
equivalence principle would allow. Where our results differ
from Einstein’s, I will be careful to point them out and
quote the general-relativistic ones.

Most of the discussion should be accessible to intermedi-
ate-level undergraduates. For further reading on general
relativity itself, see the primer published in this journal by
Price* or any number of introductory texts. Also in this
journal, Campbell and Morgan® have described how gen-
eral-relativistic gravitational radiation may be treated in a
manner analogous to the electric/magnetic decomposition
of electromagnetic radiation. Relativistic versions of these
estimates may be found in the review by Douglass and Bra-
ginski.®

II. WHAT ARE GRAVITATIONAL WAVES?

Newtonian gravity is based on the field equation for the
Newtonian potential ¢ (x,¢)

V3¢ = 47Gp, (1)
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wherep is the mass density of the source of the field and G is
Newton’s gravitational constant, G = 6.673x 10~!! m?
kg~ !s~2 This equation has the solution (which we will
call the Newtonian field ¢ y )

b nlxt) = —Gfp(y,t>r—‘d3y,rs|x—y|, 2)

which may be thought of as a superposition of the 1/7 fields
of each element of mass p d 3y at position y. If the source is
changing with time, as in the case of two stars orbiting each
other, then Eq. (2) implies that the change in ¢ produced by
the change in p is instantaneous: The time ¢ is the same on
both sides of the equation. But special relativity tells us that
no information should be able to propagate faster than the
speed of light ¢. In order to make gravity consistent with
this principle, the simplest thing we can do is to modify Eq.
(2) to put delay (a retardation) between the time on the
right-hand side and that on the left-hand side: A change in
p at'y ought to be felt at x only after a time |x-y|/c. This
leads to the modified field (which we call the relativistic
field ¢z)

drix,t)= — Gfp(y,t —r/e)r~td?. (3)

We will take this as our fundamental equation and derive all
the effects of gravitational radiation from it. We will discuss
later what relation it bears to general relativity, which is a
more sophisticated modification of (2) that still embodies
the fundamental retardation property of (3). It is easy to
show {but is unimportant for our purposes} that ¢ in (3)
satisfies the scalar wave equation,
2y 186 _

Ve Z 32 47Gp

The simple insertion of retardation in (3) is responsible
for gravitational waves. To see how this comes about, con-
sider the spatial gradient of ¢:

_ p_1 Pp\X—Y s, 4
Véx GJ-<r c c?t) 7 ay )

The region of integration is limited to the bounded region
in which p 50, a region of dimension R, say. Suppose we let
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the origin of coordinates be in this region. If we consider
Véx far from the source, so that |x|> R, then = |x| and we
can take r so large that the first term in Eq. (4) is negligible
compared to the second. Then

n'v¢R ~ c_la¢R /at, (5)
where
n=x/|x| (6)

is the unit radial vector from the origin (inside the source)
to the field point x. Equation {5) says that if we are far away,
the typical length scale 4 on which ¢, changes
(n-Vgr ~dr /A )is c times the typical time scale P on which
ér (and the source p) changes (O¢g /3t ~dg /P). This is
characteristic of a wave traveling at speed c. In contrast to
the Newtonian potential ¢  in Eq. (2), whose spatial length
scale is determined only by |x| independently of dp/3dt, the
relativistic ¢ has a spatial dependence which “forgets”
the distance |x| to the source and is sensitive only to dp/dt.
This is a gravitational wave.

It will turn out that the time-dependent part of ¢, will
often be a small fraction of ¢ . Since ¢z has the dimensions
of (velocity)?, it is conventional to define a dimensionless
quantity

h =(time-dependent part of ¢ )/c>. (7)
Discussions of gravitational-wave detection in the litera-
ture commonly refer to A, the amplitude of the wave. This is

the same 4 as we have defined in Eq. (7), at least to within a
factor of 2.

III. GENERATION OF GRAVITATIONAL WAVES
A. The quadrupole approximation

We shall calculate the dominant contribution to 4 far
from the source (|x|>R ) when the motions in the source are
slow compared to ¢. This involves two approximations in
Eq. (3): _

(i) The overall factor ' is nearly |x| ~':

rl=x|"' + 2yn|x| 7 + -

Since we are interested in |x|» |y|, we can approximate

be = =Gl [plyr/cy +0(x @
(ii) The retarded time #-r/c is nearly equal to
to=t — |x|/c, 9)

and since we assume that p changes slowly in time we may
expand in the difference

t—to=(|x| — [x —y|)/e
= —ny/c+ O(|x| 7).

Then Eq. (8) becomes, with dots denoting time deriva-
tives,

br = —Glx|”! f [plte) — ¢~ Bltgny

+ I pltolmeyf + - ]1d %y + O(|x]| 73). (10)

We have suppressed the explicit dependence of p on'y. We
have kept in (10) only terms that fall off as |x|~. Let us
examine each term in succession.

The first term involves only the mass M of the source

fp(to)d %y = M = const. (11)
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This gives the Newtonian part of the field. Since M is con-
stant it does not contribute to 4. The second term can be
reduced by using the continuity equation

. a
plty) +—lpV;) =0, (12)
dy;
where repeated subscripts imply a sum over all three co-
ordinates. The second term involves the integral {recall that
n is independent of y)

fpy,- dy= — J.y.-—‘z-(pV,-Wy
8yj
=J5i1‘ij d’y

=JpV,- d?y = P, = const. (13)

(The second step used Gauss’s theorem for a volume en-
closing the source, so that p = 0 on its boundary.) So the
second term gives only the momentum of the source, which
is again constant and thus not part of 4.

The third term in Eq. (10) gives our first contribution to
h, which is why we stopped the expansion there. If we de-
fine the quadrupole tensor I; of the source,

Iij(t)EfP(V’t .y, d’y, (14)
then in (10) we have
[ arv=i,, (15)

Putting all this together gives

b — GM GnP, _ G j,.jn,.nj
T el 22 [y

he — (G /2¢Yn,n,/)x). (16)

This is our basic approximation to 4. Two points are worth
noting because they are exactly the same in general relativi-
ty. First, 2 depends on the second time derivative of the
quadrupole tensor. Second, the lower-order terms in the
slow-motion expansion (10) were eliminated by the conser-
vation laws for mass and momentum. It is interesting to
notice that we could have gone through all of this for elec-
tromagnetism, interpreting p as the charge density. Then
M in Eq. (11) would be Q, the total charge, again constant.
But Eq. (13) would be the integral of the current density,
which is not constant, and which is easily seen to be the first
time derivative of the dipole momentd; = f py, d>y.Sothe
dominant contribution to electromagnetic waves comes
from the charge dipole moment. In gravity, conservation of
momentum eliminates the analogous term, so the radiation
comes from the mass quadrupole moment.”

But Eq. (16) differs from the general-relativistic result in
an important way. Equation (16) depends only on the com-
ponent of I; along the vector n, which is the direction of
propagation of the wave [see Eq. (5)]. In general relativity
the waves depend on the transverse components of the
trace-free quadrupole tensor

fy =1 — 6l (17)

where I, is the trace of I. Only the components of ; or-
thogonal to n; contribute to the physical effects of general-
relativistic waves. This is a fundamental distinction. Qur
model gravitational field ¢ is a scalar, and therefore has

’
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only longitudinal waves. General relativity is a tensor the-
ory and has only transverse waves. (The electromagnetic
analogy mentioned in the previous paragraph would also
break down on this point: Electromagnetic waves are also

transverse and depend only on the component of d; perpen-’

dicular to n,.) The fact that #; rather than I; generates the
waves in general relativity also has an important conse-
quence: Spherically symmetric motions generate no gravita-
tional waves. This is because the only spherically symmet-
ric tensor is a multiple of the unit tensor §;, since it is the
only matrix which is left unchanged by every orthogonal
transformation of the coordinates (every rotation}. Butif /;
is proportional to §;;, then #; vanishes and there will be no
radiation.

ijs

B. Order-of-magnitude estimates

These reservations regarding our model are unimpor-
tant if we only use Eq. (16) for order-of-magnitude esti-
mates of 2. Manipulations similar to those that led to Eq.
(13) give, as a rough estimate,®

j,.j~2fpV,.V, d’y.

In most sources of waves in astrophysics, the velocities are
the result of gravitational forces, e.g., those which cause a
star to collapse. By the gravitational virial theorem, then,
we should expect that the typical value of V; V; should be of
order V2, which would be bounded by ¢,,,, some typical
value of ¢ inside the source. This leads to

|Iy”i”j|§2M¢int, (18)
and from (16)
& |h|Soydin/c (19)

where ¢, is the Newtonian potential — GM /|x| of the
source at the observer. This simple formula gives very use-
ful upper limits on 4, as we will see shortly.

C. Gravitational-wave lilminosity

It is obvious on physical grounds that when a gravita-
tional wave passes through a body, the time-dependent
Newtonian gravitational forces can cause internal motions
in the body and therefore increase the body’s internal ener-
gy. (We will see how this happens in detail in Sec. IV.)
Where has this energy come from? Ultimately it comes
from the source of the waves, but if energy is to be con-
served at all times, then it must be present in the waves after
they are created by the source and before they transfer it to
the distant body. (This discussion is, strictly speaking, in-
appropriate in general relativity, where detailed conserva-
tion of energy sometimes fails. But it is sufficient for moti-
vating the present calculation.) The loss of energy by the
source is called radiation reaction and is treated in Sec. 111
D. Here we consider the radiation flux.

How much energy is carried by the waves? The flux of
our scalar field in the direction n is’

F= —(1/47G )n-Véy )px - (20)
In the wave zone [i.e., where Eq. (15) applies] we get
F=(1/4nGc) % = (/4G )h 2. (21)

The luminosity of the source is therefore
& L = 4n|x|’F = (¢/G)|x|*h 2 ~(c*/G ) |x*h?,  (22)
where the last step is appropriate for monochromatic
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waves of frequency w. This is useful for deducing 4 if we
know L. For example, from the spin-down rate of the Crab
pulsar PSR0531 + 21, we know that its luminosity in gra-
vitational waves cannot exceed its total energy loss rate of
2x10%' J s~ '. At the Crab’s distance of 1 kpc and with a
radiation frequency equal to 380 s~ (twice its rotational
frequency, since the radiation is quadrupole), Eq. (22) sets
an upper limit of

Ay S6X1075 (23)
on the amplitude of radiation from the Crab.

In the spirit of Eq. (19) we can get a back-of-the-envelope
upper limit for L. For a self-gravitating source, »” is bound-
ed above by the natural dynamical frequency GM /I3,
where /is the typical size of the source, sow’ S ¢ 3, /(GM ).
Putting this into (22) and replacing |x|>/(GM )> by ¢  *, we
find

‘ LS Ly@in /CZ)S,

Ly=c’/G =3.629x10°2Js~". (24)
The luminosity of a source is therefore a very strong func-
tion of its internal self-gravity.

We can deduce another important formula from (21) by
using Eq. (16):

F~(G /167 ¥/ |x[?, (25)
where we have suppressed indices on I, because, as we re-
marked earlier, our model picks out the wrong components
anyway. Then we find

L~(G/4c)I 2. (26)
This is remarkably close to the result for general relativity,
which is generally known as the guadrupole formula

L =(G /5y fy. (27)

D. Radiation reaction

How does the emission of this energy affect the source?
To compute these radiation-reaction terms we return to
Eq. (3) and compute the field inside the source. Different
regions of the source interact with each other with a slight
retardation delay. As is characteristic of differential-delay
equations, this interaction dissipates energy, precisely the
energy lost to radiation. So now in (3} we assume that |x| is
of the same order as |y|, but we continue to assume slow
motions and expand p(¢-r/c) about p(¢ ):

be = — Gfr*ln;( ~I L2 piynay. (28)

nl gt

This is called a “near-zone” expansion, in contrast to the
“far-zone” expansion we used in Eq. (10). We need to keep
the first six terms, which we now examine in succession.
The first term is, of course, the Newtonian term

by = ~GJ-pr'1d3y. (29)
In the second term the factors of » cancel and we have
fp d’y =0.

The third term will be called the first post-Newtonian term
indg,

box =~ [ 13, (30

Bernard F. Schutz 414



The fourth term (n = 3) turns out to be independent of x:

[Poary= [(xP—2xy + 3 @
= ]xlzjﬁd3y—2x-jyﬁd3y

+f|y|2ﬁd3y. (1)

The first integral vanishes by mass conservation, the sec-
ond by momentum conservation. The third term is inde-
pendent of x. Since gravitational forces come from gradi-
ents of §, we will drop this term from now on. (If we were
doing electromagnetism, then as remarked earlier the sec-
ond term would not vanish and this term would give the
first radiation-reaction effects, proportional to d;.)
The fifth term is our second post-Newtonian term

G d*

¢ppN =
The “post-Newtonian” nomenclature is taken from the
analogous near-zone expansion of general relativity.

The sixth term will turn out to give radiation reaction. In
relativity it is called the 21-post-Newtonian term, since in
the expansion it is only half as far beyond second post-
Newtonian as that term is from the first post-Newtonian
term. Similar considerations as we applied to Eq. (31) give

bresce = (G /30¢) (x,, 1§+ 4|x TG —x, TP),  (33)
7Y 2

where
T, =fpy,-|s'|2d3y (34)

and where I ' is the fifth time derivative of I,.
To see that this is the reaction term let us calculate the
work done by ¢, on the whole source:

‘fi_f= —JpKVi¢R d®x = —Jp¢R d’x. (35)

The Newtonian term contributes

—qusN d3x=foP—)P—'(”" 13) 43y g%

|x —y|

=i(%c;f f p(t,x)p(t,y)r_ld3yd3x), (36)

dt

which is minus the rate of change of the Newtonian poten-
tial energy, as we expect. But this energy is not lost to radi-
ation, as we can see if we consider a periodic source and
average over one period P, defining

S P
=L fo far. (37)

Then we find

(- [oona>)=o, (38)

because (36) is a total time derivative integrated between
times when the system is in identical configurations. For
the next term we find

415 Am. J. Phys., Vol. 52, No. 5, May 1984

([ [ rexbtnayas)

G
2¢%

Gld . .
Z{L | [wexptena 3“’3")
0

(- [opon as) =

and similarly

( — JpqippN d3x> =0.

But the reaction term is different:

< - J.p¢react d3x>
= —(G /30c5)<1,.j1£;> I — T f px, d3x>.

The final average vanishes (momentum conservation
again) and we finally get, after integrating twice by parts on
time,

(%} = —(6/30(I,T, + i1, 1)
This is exactly the radiated lurhinosity that we would have
obtained in Eq. (26) had we kept track of our indices, so the
energy lost in the source ({dE /dt ) is negative) appears in
waves at infinity. The correct general-relativistic formula is
given by (27):

dE _ 5 ....
(—;} = — (6/56)(E ). (39)

The local reaction potential in general relativity is simpler
than (33):

¢react, gen. rel. = (G/Scs)xixjf g' (40)
The reaction force is the negative of the gradient of this
potential.

The whole question of the energy radiated by sources in
general relativity and of the radiation reaction they exper-
ience has been embroiled in controversy for some time, for
reasons which would be inappropriate to discuss at length
here. The controversy is subsiding, however, and there is
now nearly unanimous agreement’® that Egs. (27),(39), and
(40) can be used as any astrophysicist would want to use
them in estimating the strength of waves emitted by a slow-
motion source and the effects of that emission on the
source.

E. Sources: supernovae

Let us now put these formulas to work in deriving order-
of-magnitude estimates for a few sources. From the point of
view of detecting the radiation, the most promising class of
sources seems to be supernova explosions. These occur
when a star uses up its nuclear fuel and is unable to support
itself against its own gravity. The central core of the star,
with mass about 1M, collapses inwards. At great density
part of the collapsing matter “bounces,” expelling the re-
maining envelope of the star (which may have a mass of 6
20M;, ). Most of the collapsed matter remains collapsed, as
either a black hole or a neutron star. Some nuclear energy is
released in the explosion, but most energy comes from the
gravitational binding energy of the collapsed remnant, so
Eq. (19) applies. An upper limit to &,,, is its value for a
massive neutron star, ¢,,,/c’~0.2. To compute ¢, we
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need to decide how far away the supernovae is. A galaxy
will have a supernova only once every 20-30 years, so if we
wish a reasonable event rate for terrestrial detectors we
have to be able to detect distant explosions. The Virgo clus-
ter of galaxies has approximately one event per month. A
1M, core at the distance of d,, X 10Mpc (~3 X 10°d,, m)

has
) GMy/c*  15x10°m |, _,
I¢N/c I = -~ 23 10
dip,X10Mpc 3x10” m
~5X1072d 5L
Therefore we find

’ ‘hsupemoval § 10‘21‘1 16" (41)
This magic figure of 10~2' is the sensitivity being aimed for
in the next generation of detectors (see below). If we are
lucky enough to have a supernova in our own galaxy, then
this upper limit rises to ~ 1078,

But this could be a serious overestimate, because a per-
fectly spherical collapse would produce no radiation. What
effects might prevent a spherical collapse? Rotation is one,
and all stellar cores are probably rotating. Tidal interaction
between binary stars is another: If an explosion takes place
in a close binary, the core may be distorted by a few percent
by the gravitational field of the companion. Collapse am-
plifies such asymmetries, but at present the hydrodynami-
cal calculations are beyond the best computers, so we have
little theoretical basis for estimating a more realistic value
for h. This is one reason for building gravitational-wave
detectors: They will put observational constraints on the
asymmetry of collapse.

Are there other observational constraints? Katz'' point-
ed out a number, one of which provides a lower bound on h.
Pulsars, which are presumably produced in most super-
nova explosions, have an unusually high spatial velocity, '
on the order of 120 km s, compared with tens of km s~*
for their progenitors. This must reflect an asymmetry in the
collapse that formed them, in which there was a differenti-
ation of momentum within the system, with the neutron
star moving one way and the envelope moving the other.
Indeed, consider

I, = [ PV, + Vip)a.

The moment of momentum implied by the spatial velocity
of pulsars means that the right-hand side will not vanish,
and so gives a lower bound on I. We estimate this to be

|7 | 2 {pulsar momentum) X (size of system)

2m,V,l
For 4 we need I, so we assume that this separation of mo-

mentum occurred on the collapse time scale 7 (it is hard to
imagine it happening on a longer time scale), which leads to

I\2m,V,l/T~m,V,V.,
where V, is the collapse velocity. Taking m, ~1Mg,
V,~10>kms~', ¥V, ~0:1¢, we find from (16 for a super-
nova at a distance d,;, X 10M pc

‘ lhsupemova | 2 10_25d 16 1' (42)

This is a lower limit because other asymmetries can ra-
diate which do not produce a fast-moving remnant. For
example, a collapsing core which is rotating but symmetric
on reflection through the equatorial plane—as presumably
isolated stars are—will not produce a moving remnant be-
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cause no direction is preferred. At present, it seems that
only detections of gravitational waves will tell us where
between the two extremes (41) and (42) real collapse falls.

The detectors presently under construction (see below)
will not have time resolution shorter than the expected du-
ration of a supernova burst, about 1 ms. From their point of
view, therefore, what is of interest is the fotal pulse energy
crossing their apparatus in their bandwidth. We shall call
this the pulse strength. They have invented a unit for this,
the gravitational pulse unit (GPU):

1GPU=10°Tm *Hz "

To relate this to & one needs to make assumptions about the
duration and bandwidth of the radiation. For bursts it is
reasonable to assume that the bandwidth B is of the same
order as the typical frequency v and is just the reciprocal of
the burst time 7, so that the pulse’s strength S'is related to
its flux F by

S =Fr/B~Fr.

Using Eq. (21) for F and the two limits (41) and (42) on A
gives

3 . 3 3
S~ i g2 C p2
4G 4rG 47G

@ 3% 1074 525 S(GPU)S3Xx107'% 52, (43)

F. Sources: binaries

Another much-discussed source of waves is a binary sys-
tem. Here the upper limit (19) is a realistic estimate, since
the orbital motion is highly nonspherical. A close binary
(#inc ~ 1073) in our galaxy (|x| ~ 1 kpc~3x 10" m) with a
total mass of 10M, has |/ | ~5X 10~ ", This looks good by
comparison with Eq. (41), but we can see from Eq. (22) that
the energy flux in the waves depends also on the frequency,
and the binary orbital frequencies are in the millihertz re-
gion, compared to the kHz frequencies of supernova waves.
This low energy flux and technical considerations in the
design of detectors make even the closest binaries only mar-
ginally detectable.

The binary pulsar system' contains the pulsar
PSR 1913 + 16 and another star, presumably also a neu-
tron star, which is unseen. The stars, which each have a
mass'® of 1.4M,, are separated by a distance of ~1.2 X 10°
m. This makes ¢, ~2X107%? If the system is 5
kpc~ 1.5 10?° m away, then A~6x 10~%, which is far
too small for direct detection at present. But the energy lost
by the system is significant. Equation (24) now gives a real-
istic estimate,

24 1 —1
Loz 416~107Ts™

A more revealing number is the energy-loss time scale,
: GM _
g=|E/E| ~T(¢im/cz) ‘.

The number GM /c3 is the light-travel time across the gravi-
tational radius of the system, GM /c>. For the binary pulsar
we find 7z ~ 1.3 X 10" yr. What is actually measurable is
the period change P. For Newtonian orbits P~ |E | 7*/%, so

Tp=|P/P| =2y (44)

which is then ~ 10'° yr for the binary pulsar. A more accu-
rate calculation taking into account the large ellipticity of
the orbit, which causes significantly more radiation from
the higher velocity at periastron (a correction of a factor of
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12 in this case) and using the full general relativistic formu-
las gives a prediction a factor of 25 smaller than this,
4% 10% yr. The measurements' agree with this prediction to
within the observational errors of about 10%.

IV. DETECTION OF GRAVITATIONAL WAVES
A, How waves affect matter

To build a detector we must understand how gravita-
tional waves affect matter. In particular, how is it possible
to detect A, which is much smaller than ¢ /c?, when we
cannot detect the original star itself by measuring ¢ ? The
answer lies in the nature of gravity. First, the Newtonian
acceleration is given by the gradient of ¢; the acceleration
associated with ¢  is ¢  /|x|, while the acceleration asso-
ciated with a wave of wavelength A is of order 2mc*h /4.
Since |x|>A, this is a big gain for the wave. But this accel-
eration is not directly measurable in the laboratory, since
the whole Earth feels the same acceleration. This is the
equivalence principle at work: For the same reason, astro-
nauts do not feel any acceleration from the Earth’s field as
they circle in orbit. What we can measure in the laboratory
is only the difference in this acceleration across an experi-
ment. This is called the tidal force, since it is the difference
in the Moon’s gravitational force across the Earth which
raises the tides. If the experiment has size /, then this tidal
acceleration is / times another gradient of ¢. So the tidal
acceleration due to 4 is

tidal acceleration ~c*hl (27/A )* ~hlo?, (45)

where w is the angular frequency of the wave. This is gener-
ally much larger than the corresponding number for the
Newtonian field, ¢  / /|x |2 Infact, comparing them tells us
how far away we must be for waves to dominate the
source’s field:

A )(¢N)1/2 ( A )(¢int)'/2
wave-dominal Rl=— Rl=— . 46
Xl dominarea ( 2w /\c*h 2 /\ ¢ (46)

A simple way of seeing how the waves affect matter is to
consider how two free particles in empty space react to the
wave. They experience a relative acceleration given by (45)
with

h = hpe* (47)

at their position. The equation for the change in their separ-
ation &/ is thus

81 = w*lhge™,
whose solution is 8/ = 8/, exp(iwt ), with
|61p/1] = |hy|. (48)

This gives a physical interpretation of 4: It is the relative
strain induced in a system of free particles by the wave. The
goal of detecting & ~ 10~2! seems, in this light, formidable
indeed!

We have ignored so far the direction in which the parti-
cles are displaced from one another by the wave. For our
scalar model, this is in the direction of propagation of the
wave, since in transverse directions the gradient of 4 is of
order / /|x| rather than /# /A. But this is not true of general
relativity, which as we have already remarked has trans-
verse waves. In general relativity, distances along the direc-
tion of propagation are unaffected while distances trans-
verse to the wave are changed as in Eq. (48). The exact
manner in which this happens and the nature of the polar-
ization states of the wave are discussed in Ref. 4.
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B. Bar detectors

The oldest and most familiar kind of detector is the bar
detector pioneered by Weber' in the 1960’s. Although
Weber’s early reports of detections have not been con-
firmed by subsequent observations by other groups,'
Weber’s design has formed the basis of a number of detec-
tors of improved sensitivity. The most sensitive currently
operating appears to be the cryogenically cooled one at
Stanford, developed by Fairbank'® and collaborators. At
its resonant frequency of 842 Hz it has a limiting 4 of about
3x 107 '# (0.1 GPU).

The principle of the bar detector is to use the gravita-
tional tidal force of the wave to stretch a massive cylinder
along its axis, and then to measure the elastic energy of
vibration gained by the cylinder. In order to reduce the
thermal noise amplitude during a short burst of radiation,
bars are constructed to have little damping (high Q ) in their
fundamental frequency of longitudinal oscillation, which
should be in the range of frequencies of the incoming wave.
Thi. means they usually operate as narrow-band detectors,
generally somewhere between 500 and 1500 Hz. The typi-
cal frequency for a supernova explosion ought to be on the
order of the reciprocal of a few light-travel times across a
neutron star, which has a radius of about 20 km. This gives
about 1000 Hz. But the signal from a supernova should be
broadband, so bar detectors ought to be able to see it with
any resonant frequency near 1 kHz. Tuning to this frequen-
¢y means using a bar of ~ 1-4 m in length.

Bars can now be isolated from their surroundings well
eniough to make thermal fluctuations (Brownian motion)
the principal source of noise. By cooling the bars to a few
degrees kelvin and by improving the resonance properties
of the material (a quality factor Q ~ 10° is common, and 10°
may be achievable even in these massive systems), an im-
provement in sensitivity of about four orders of magnitude
has been made in the last decade or so. But another four are
necessary, and to achieve that bars must face and overcome
a difficult barrier called the guantum limit: a burst of short
duration 7 will typically deposit an energy

E~1Mw*61* ~iMo*l*h *(tw/2m) ~2X 10772 ]

in a bar of mass M~ 10’ kg and length /~ 1 m whose fre-
quency is w~27Xx10° s7!, for a burst of amplitude
h~10"2" and duration 7~27/w. But the energy of one
phonon of excitation of the bar’s vibrational mode is

E,, = fio~6x107" J.

So the excitation energies expected on classical arguments
are small fractions of the phonon energy, and the process of
measuring the excitation of the bar must be arranged so as
to disturb its quantum state very little; in particular, the
measurement should #ot leave the bar in an eigenstate of
energy. So-called quantum nondemolition measurements
are possible, and the theory of how to make them is one of
the interesting contributions that gravitational wave re-
search has made to the rest of physics.'” But these measure-
ment schemes will be very difficult to implement, with the
result that the sensitivity of bars may soon be overtaken by
that of the laser interferometers.

C. Laser interferometers

Laser interferometers more nearly resemble the free par-
ticles that we discussed earlier than bar detectors do. They
consist of three independent masses located at the vertices
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of an isosceles right triangle. When a wave arrives in the
direction of one of the legs, it will change the length of the
transverse leg but not the longitudinal one. If each leg is the
arm of an interferometer of the Michelson type, this rela-
tive change in the length of the arms will produce a shift in
the interference fringe.

Although simple in concept, the technical difficulties are
formidable. Suppose tlie arm length is /~ 100 m. Then for
h~10"%! Eq. (48) implies 8/~10~' m. This is only
~2X 107" of the wavelength A, of visible light, which is
the sort of distance one would need in order to shift the
interference pattern from destructive to constructive inter-
ference. The fundamental limitation on such a measure-
ment will usually be the number ¥ of photons available,
since a distance can be measured to an accuracy ~A4,/
4N ''? with N photons of wavelength A,,. If the measure-
ment time is to be 1 ms (in order to achieve a bandwidth of
10° Hz) then the 100 m interferometer would need a power
of 10°” photons/s, or roughly 100 MW. Since powers = 1
W are available in highly stabilized lasers, the obvious way
toimprove this is to make the apparatus bigger, because the
displacement &/ increases linearly with / {until one reaches
the wavelength of the gravitational wave, about 3 X 10° m).
An interferometer with a physical size of 1 km and 300
reflections down each arm has an effective arm length of
300 km, in which case the power requirement goes down to
~50 W, which is still large. But by “recycling” the light
which is normally thrown away from an interferometer
when the interference fringe is read, this kind of power in
the arms can be retained.'® Currently, detectors are being
built with physical sizes in the 1040 m range and effective
sizes from 1 to 10 km at the California Institute of Technol-
ogy, the University of Glasgow, and the Max Planck Insti-
tute for Quantum Optics in Garching, near Munich, and
others are planned.'® By the end of 1983 one of the above
detectors may be near the sensitivity of the Stanford bar.
The next generation of laser interferometers will be on the
kilometer scale, taking them into the 10! range.

Interferometers offer a large advantage to the astron-
omer in that they are broadband detectors with a range of
roughly 500-2000 Hz. They do not rely on resonance for
their sensitivity. This means that they should (if their sensi-
tivity permits) be able to resolve the spectrum of gravita-
tional-wave bursts, which will be an important diagnostic
for inferring the detailed dynamics of the source. However
interferometers can also in principle be tuned'® to resonate
at a particular frequency, e.g., to look for waves from a
particular pulsar.

D. Other detectors

Other detectors of various designs have been discussed
and built. One of the most notable is the Japanese detector
tuned to look for radiation from the Crab pulsar.'® Search-
es for ultralong wavelength waves [1 ~ 1 AU (astronomical
unit)], which could result from the formation of the 10°M(;,
black holes which may be present in most galactic centers,
are most efficiently carried out in space. A Jet Propulsion
Laboratory group>’ has put upper limits on such radiation
by examining transponder communications with the
Voyager spacecraft which flew past Jupiter and Saturn.
Any wave pulse would cause a characteristic change in the
frequencies of signals passing between Earth and the satel-
lites. This is potentially a very sensitive and inexpensive
way of searching for gravitational waves, but in order to
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achieve astrophysically useful sensitivities, transponding
to the spacecraft would have to be improved to permit two-
frequency communication in both directions (Earth to
spacecraft and vice versa). NASA has not yet agreed to do
that on its interplanetary missions.

V. CONCLUSIONS

Like black holes and gravitational lenses, gravitational
waves are one of the consequences of general relativity
which are playing an increasingly important role in astron-
omy. Wave phenomena of all kinds in different branches of
physics bear many similarities to one another, and we have
exploited this by using a simple scalar generalization of
Newton’s theory to understand the basic physics of gravi-
tational waves and to develop a number of back-of-the-
envelope formulas for estimating their effects.

The first laboratory detection of a gravitational wave
will of course be an event of fundamental importance in
physics, but the discussion in this paper should make it
clear that it will really be a verification of the relativistic
nature of gravity rather than specifically of general relativi-
ty: Practically any relativistic theory of gravity will have
waves, since they arise simply from the retardation of the
Newtonian gravitational field. In this respect, observations
of the binary pulsar have already provided a better quanti-
tative test of general relativity’s predictions concerning
gravitational waves. In the long run, the main reason for
trying to detect gravitational waves is for the astrophysical
information they carry.

Gravitational waves have already established their im-
portance in understanding some binary star systems,? but
their real contribution to astronomy awaits the next gener-

ation of detectors, which should either see the waves from

supernovae or set useful constraints on supernova models.
And further in the future is the opening up of an entirely
new radiation spectrum. Given the surprises astronomy
has had from its initial observations in the radio, x-ray, and
y-ray bands of the electromagnetic spectrum, it is not un-
reasonable to expect that gravitational wave “‘observator-
ies” will show us still more phenomena we never dreamed
existed.
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The constraints of classical mechanics are idealizations of stiff elastic forces. They can be derived
from such forces in the limit of infinite stiffness, but this derivation presents some difficulties and
the limit has to be taken carefully. In statistical mechanics it is no longer possible to idealize stiff
potentials by constraints, not even approximately, except under a special and unrealistic
restriction on the form of those elastic forces. In quantum mechanics the limit in general does not

exist unless the same unrealistic condition is satisfied.

L INTRODUCTION

Newton formulated his laws of motion for bodies mov-
ing freely in space under the influence of forces acting at a
distance, such as apples and planets. In terrestrial circum-
stances, however, the motion of bodies is more often than
not hindered by contact with other bodies. A pendulum is
prevented from falling freely by a string or rod that con-
nects it with a fixed fulcrum, a billiard ball rolls on a sur-
face, and a train runs along tracks. The modification of
Newton’s laws needed for dealing with such constrained
motions is provided by d’Alembert’s principle and was in-
corporated in a general mathematical formulation by La-
grange.! Constraints became an essential part of classical
mechanics and were gradually promoted to the status of
axioms by Jacobi® and Kirchhoff.? Hertz* went so far as to
consider them as a more basic substitute for forces. Mach®
did not object. Nowadays they are usually introduced as a
matter of course.®’

The constraints are merely the result of the elastic forces
exerted by connecting strings or rods, or other devices by
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which the free motion is hindered. These forces differ from
those that Newton had in mind by the fact that they are so
strong that they barely allow the body under consideration
to deviate from a prescribed path or surface. It ought there-
fore to be possible to derive the d’Alembert-Lagrange
equations of motion from the unconstrained Newton equa-
tions by adding explicitly very stiff elastic forces as a substi-
tute for the constraints. One then expects® that the limit of
infinite stiffness will reproduce Lagrange’s equations.
However, we shall show in Sec. II that this limiting process
is by no means trivial, and that additional physical consid-
erations are needed to salvage Lagrange’s mathematics—
once called “the finest example in all science of the art of
getting something out of nothing.”®

In statistical mechanics the situation is even worse. The
statistical distribution of a system with constraints (in con-
tact with a heat bath) is in general different from that of the
same system in which the constraints are replaced with
elastic forces. If a polymer in solution is modeled by a string
of beads linked by hard rods the average shape is different
from that obtained when the rods are elastic. And this dif-
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