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The Laser Interferometer Gravitational Wave Observatory (LIGO) consists of two widely sepa-
rated 4km laser interferometers designed to detect gravitational waves from distant astrophysical
sources in the frequency range from 10Hz to 10kHz. The first observation run of the Advanced
LIGO detectors started in September 2015 and ended in January 2016. A strain sensitivity of better
than 1023 / v/Hz was achieved around 100 Hz. Understanding both the fundamental and the tech-
nical noise sources was critical for increasing the observable volume in the universe. The average
distance at which coalescing binary black hole systems with individual masses of 30 M could be
detected was 1.3 Gpc. Similarly, the range for binary neutron star inspirals was about 75 Mpc. With
respect to the initial detectors, the observable volume of Universe increased respectively by a factor
69 and 43. These improvements allowed Advanced LIGO to detect the gravitational wave signal
from the binary black hole coalescence, known as GW150914.

PACS numbers: 04.80.Nn, 95.55.Ym, 95.75.Kk, 07.60.Ly

I. INTRODUCTION

The possibility of using interferometers as gravitational
wave detectors was first considered in the early 1960s [1].
In the 1970s and 1980s, long-baseline broadband laser in-
terferometric detectors were proposed with the potential
for an astrophysically interesting sensitivity [2, 3]. Over
several decades, this vision evolved into a world-wide net-
work of ground based interferometers [1—6]. These instru-
ments target gravitational waves produced by compact
binary coalescences, supernovae, non-axisymmetric pul-
sars, cosmological background as well as any unknown
astrophysical sources in the audio frequency band, from
10Hz to 10kHz [7].

The first generation of LIGO detectors consisted of
two 4-km-long and one 2-km-long interferometers in the
United States [3]: L1 in Livingston, Louisiana, H1 and

H2 in Hanford, Washington. They were operational
until 2010 and reached their designed strain sensitiv-
ity over the detection band, with a peak sensitivity of
2 x 10723/ VHz at 200Hz. Astrophysically relevant re-
sults were produced by the initial LIGO detectors [9-12],
however, no gravitational wave signals were detected.
The second generation Advanced LIGO detectors [13]
were installed in the existing facilities from 2010 to 2014.
This new generation of instruments was designed to be
10 times more sensitive than initial LIGO, and promised
to increase the volume of the observable universe by a
factor of 1000. Commissioning of the newly—installed de-
tectors took place from mid 2014 to mid 2015. In Septem-
ber 2015, Advanced LIGO began the era of gravitational
wave astronomy with its first observation run (O1), col-
lecting data until January 2016. This run has culminated
in the first direct detection of gravitational waves from
the black hole coalescence, GW150914 [14, 15]. This sys-



tem consisted of two black holes of about 35 solar mass
each which merged about 500 Mpc away.

While the detectors were not yet operating at design
sensitivity during the first observation run, their astro-
physical reach was already significantly greater than that
of any previous detector in the frequency range 10 Hz—
10kHz. Around 100 Hz, the strain sensitivity was 8 x
10’24/\/I£. For a system consisting of two 30 Mg black
holes the sky location and source orientation-averaged
range was 1.3 Gpc, whereas for a binary neutron star sys-
tem the range was 70-80 Mpc. This range is ~4.1 and
~3.5 times higher than that of the initial LIGO detec-
tors, resulting in a factor of ~70 and ~40 improvement,
respectively, of the volume that is probed and LIGO’s
detection potential.

In this paper we describe the noise characterization
of the Advanced LIGO detectors during the first obser-
vation run. Sec. II introduces the optical configuration,
control system and calibration of the detectors. Sec. III
analyzes the performance of the detectors and describes
all investigated noise sources. We end with the conclu-
sions in Sec. IV.

II. INTERFEROMETER CONFIGURATION

In general relativity, a gravitational wave far away from
the source can be approximated as a linear disturbance
of the Minkowski metric, g, = 1, + hy with the space-
time deformation expressed as a dimensionless strain,
huw. In a Michelson interferometer we define the dif-
ferential displacement as L = L — L, where L and L
are the lengths of the inline arm and the perpendicular
arm, respectively, as shown in Fig. 1. With equal macro-
scopic arm lengths, Lo ~ L =~ L, the gravitational
wave strain and the differential arm length are related
through the simple equation L(f) = L — L1 = h(f)Lo,
where h is the average differential strain induced into
both arms at frequency f.

The test masses are four suspended mirrors that form
Fabry-Perot arm cavities. These mirrors can be consid-
ered as inertial masses above the pendulum resonance
frequency (~1Hz). Any noise present in the differen-
tial arm channel is indistinguishable from a gravitational
wave signal. Residual seismic noise, thermal noise asso-
ciated with the vertical suspension resonance, and the
gravity-gradient background limits the useful frequency
range to above 10 Hz as discussed in Sec. IIT A. Motion of
the four test masses form the two most relevant degrees
of freedom: differential and common arm lengths. While
gravitational waves couple to the differential arm length,
the common arm length is highly sensitive to changes in
the laser frequency according to the equation

L
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where v = 2.82 x 10'* Hz is the laser carrier frequency,
V(f) is the laser frequency noise. Signal L, is used for
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FIG. 1. Layout of an Advanced LIGO detector. The an-

notations show the optical power in use during O1l. These
power levels are a factor of ~8 smaller compared to the de-
signed power levels. The Nd:YAG laser [16], with wavelength
A=1064nm, is capable of producing up to 180 W, but only
22 W were used. A suspended, triangular Fabry-Perot cav-
ity serves as an input mode cleaner [17, 18] to clean up the
spatial profile of the laser beam, suppress input beam jitter,
clean polarization, and to help stabilize the laser frequency.
The Michelson interferometer is enhanced by two 4-km-long
resonant arm cavities, which increase the optical power in the
arms by a factor of Garm =~ 270. Since the Michelson interfer-
ometer is operated near a dark fringe, all but a small fraction
of the light is directed back towards the laser. The power re-
cycling mirror resonates this light again to increase the power
incident on the beamsplitter by a factor of ~ 40, improv-
ing the shot noise sensing limit and filtering laser noises. On
the antisymmetric side, the signal recycling mirror is used to
broaden the response of the detector beyond the linewidth of
the arm cavities. An output mode cleaner is present at the
antisymmetric port, to reject unwanted spatial and frequency
components of the light, before the signal is detected by the
main photodetectors.

frequency stabilization of the main laser as discussed in
Sec. IIT E.

The central part of the interferometer is usually called
the dual-recycled Michelson interferometer. Its function
is to optimize the detector’s response to gravitational
waves. The power recycling cavity, formed by the power
recycling mirror and the two input test masses, increases
optical power incident on the arm cavities and passively
filters laser noises as discussed in Sec. IIT E. The signal re-
cycling cavity, formed by the signal recycling mirror and
the two input test masses, is used to broaden the response
of the detector beyond the linewidth of the arm cavities.
The Michelson interferometer, formed by the beam split-
ter and the two input test masses, is controlled to keep
the antisymmetric port near the dark fringe. The dual re-
cycled Michelson interferometer can thus be described by
three degrees of freedom: power recycling cavity length
lp,+, signal recycling cavity length [, y and Michelson
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FIG. 2. The strain sensitivity for the LIGO Livingston de-
tector (L1) and the LIGO Hanford detector (H1) during O1.
Also shown is the noise level for the Advanced LIGO design
(gray curve) and the sensitivity during the final data collec-
tion run (S6) of the initial detectors.

10° ———
—— Advanced LIGO design
— Advanced LIGO, H1 (2015)

— Enhanced LIGO (2010)

10

10°

Horizon luminosity distance [Mpc]|

Ll
10° 10* 10% 10°
Observed chirp mass M)

FIG. 3. The sensitivity to coalescing compact binaries for
the Advanced LIGO design, first observation run (O1) and
the final run with the initial detectors (S6). The traces show
the horizon distance, which is the distance along the most
sensitive direction of the interferometer for a binary inspiral
system that is seen head-on and for a signal-to-noise ratio of
8. The horizontal axis is the chirp mass which is defined as
M= (1+ ,z)M%M%7 where M = M; + M> is the total mass,
u = MiMs/M is the reduced mass, and z is the cosmological
redshift. Units are in solar masses, M. The horizon distance
is computed for the case of equal masses M; = M2 and using
the inspiral-merger model from [19].

length [_, defined as

Iy +1L
lprf’ = lpr H 2
Iy +1
ls,+ = lsr+ I 9 = (2)
=1 -1,

where distances Iy, ls-, [ and [ are defined in Fig. 1.

The most important optical parameters of the Ad-
vanced LIGO interferometers are summarized in Table I.
The beam size here is defined as the distance from the
beam center to the point when intensity is reduced by a
factor 1/e2. The cavity pole f, determines the width of
the cavity resonance and is given by

Ye

fp = ma (3)

where ¢ is the speed of light and ¥ <« 1 is the total
optical loss in the cavity, including transmission of the
input and output cavity couplers as well as scattering
and absorption losses. The response of the Advanced
LIGO interferometers is diminished at high frequencies
due to common and differential coupled cavity poles (f
and f_) according to the transfer functions
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TABLE I. List of optical parameters

Parameter Value Unit
Laser wavelength 1064 nm
Arm cavity length, Lo 3994.5 m
Power recycling cavity length, I, + 57.66 m
Signal recycling cavity length, 5 + 56.01 m
Michelson asymmetry, [— 8 cm
Input mode cleaner length (round trip) 32.95 m
Output mode cleaner length (round trip) 1.13 m
Input mode cleaner finesse 500

Output mode cleaner finesse 390

Round trip loss in arm cavity, Yarm 85-100 ppm
Arm cavity build—up, Garm 270

Power recycling gain, Gprc 38

Signal recycling attenuation, 1/Gsrc 0.11

Common coupled cavity build—up, G+ 5000

Differential coupled cavity build—up, G_ 314

Common coupled cavity pole, fi 0.6 Hz
Differential coupled cavity pole, f_ 335-390 Hz
RF modulation index 0.13-0.26  rad
Test mass diameter 34 cm
Test mass thickness 20 cm
Beam size at end test mass 6.2 cm
Beam size at input test mass 5.3 cm
Mass of the test mass, M 40 kg

Several critical improvements distinguish Advanced
LIGO from the initial detectors [13]. The much im-
proved seismic isolation system [20] reduces the impact
of ground vibrations. All photodetectors, used in the ob-
serving mode, are installed in vacuum to avoid the cou-
pling of ambient acoustic noise to the gravitational wave
channel. The larger and heavier test masses lead to a



reduction of quantum radiation pressure induced motion
and thermal noise [21]. Multi-stage pendulums with a
monolithic lower suspension stage [22] filter ground mo-
tion and improve suspension thermal noise. Furthermore,
instead of using coil-magnet actuation pairs to exert con-
trol forces on the test masses, electrostatic interaction is
employed. This actuation scheme helps to avoid cou-
pling of magnetic noise to the gravitational wave chan-
nel [23, 24].

Lower arm cavity loss, coupled with an increase in the
available power from the Nd:YAG laser, allows up to
800kW of laser power to circulate in the arm cavities—
20 times higher than in initial LIGO — significantly re-
ducing the high frequency quantum noise. The use of
optically stable folded recycling cavities allows for bet-
ter confinement of the spatial eigenmodes of the optical
cavities [25]. The signal recycling cavity [26], which was
not present in initial LIGO, was introduced at the anti-
symmetric port to broaden the frequency response of the
detector and improve its sensitivity at frequencies below
80 Hz and above 200 Hz.

Because O1 was the first observing run, and work re-
mains to be done on the detectors to bring them to their
design sensitivity, not all of the interferometer param-
eters were at their design values during Ol. Most no-
tably, the laser power resonating in the arm cavities was
100 kW instead of the planned 800 kW. More power in the
arm cavities improves the shot noise level as discussed in
Sec. ITII B. Circulating optical power will be increased in
future observational runs. Additionally, the signal recy-
cling mirror transmissivity was 36%, in contrast to the
design value of 20%. This higher transmissivity of the
signal recycling mirror improves the quantum noise in
the frequency range from 60Hz to 600 Hz at the price
of reducing the sensitivity at other frequencies. Finally,
the best measured Advanced LIGO sensitivity in the fre-
quency range 20-100 Hz, as discussed in Sec. III, is lim-
ited by a wide range of understood technical noise sources
as well as currently unknown noise sources.

Fig. 2 shows the Advanced LIGO detector’s sensitivity
during the first observing run. The performance of both
the L1 and H1 detectors is compared to the initial LIGO
sensitivity and the design sensitivity: the improvement
with respect to S6 was 3—4 times at 100 Hz and higher
frequencies. Below 100 Hz, the upgraded seismic isola-
tion system yielded even larger improvements, with more
than an order-of-magnitude-better strain sensitivity for
frequencies below 60 Hz. The sensitivity of Advanced
LIGO can also be quantified as maximum distance at
which a given astrophysical source would be detectable,
known as “horizon distance”. Fig. 3 shows the horizon
distance as a function of the chirp mass for coalescence
of neutron star (M < 2Mg) and black hole (M 2 2M)
binaries. For chirp masses S 100Mg horizon distance
increases with chirp mass since gravitational wave signal
is stronger from heavier binary systems. However, the
signal also shifts towards lower frequencies (and out of
LIGO frequency band) for massive binary systems, and

TABLE II. The linewidths of Pound-Drever-Hall signals and
the requirements for residual RMS motion for the main inter-
ferometric degrees of freedom.

Degree of freedom Linewidth Residual
Common arm length 6 pm 1 fm
Differential arm length 300 pm 10 fm
Power recycling cavity length 1 nm 1 pm
Michelson length 8 nm 3 pm
Signal recycling cavity length 30 nm 10 pm

horizon distance decreases for chirp masses 2 100M,.

A. Interferometer Controls

In operation the laser light needs to resonate inside
the optical cavities. This requires that the residual lon-
gitudinal motion of the optical cavities be kept within
a small fraction of the laser wavelength [27]. The sus-
pended mirrors naturally move by ~ lum at the micro-
seismic frequencies around 100 mHz—much larger than
the width of a resonance. To suppress this motion, a
sophisticated length sensing and control system is em-
ployed, using both the well-known Pound-Drever-Hall
technique [28, 29] and a version of homodyne detection
known as “DC readout” [30]. Table IT shows linewidths
and requirements for residual root-mean-square (RMS)
motion of the main interferometric degrees of freedom.

An electro-optic modulator generates radio frequency
(RF) phase modulation sidebands at 9 MHz and 45 MHz,
symmetrically spaced about the laser carrier frequency.
The Pound-Drever-Hall technique is used to sense all lon-
gitudinal degrees of freedom except for the differential
arm channel. Feedback control signals actuate on the
suspended mirrors, using either coil-magnet or electro-
static actuation. The common arm cavity length is also
used as a reference to stabilize the laser frequency, with
sub-mHz residual fluctuations (in detection band).

The gravitational wave signal is extracted at the anti-
symmetric port of the interferometer, where fluctuations
in the differential arm cavity length are sensed. The arm
cavities are held slightly off-resonance by an amount re-
ferred to as the differential arm offset AL. This offset of
roughly 10 pm generates the local oscillator field, which
is necessary for the DC readout. An output mode cleaner
[31] located between the antisymmetric output and the
homodyne readout detectors, is used to filter out the RF
sidebands as well as any higher-order optical modes, as
these components do not carry information about the
differential arm cavity length.

A similar feedback control scheme is employed to keep
the optical axes aligned relative to each other and the
laser beam centered on the mirrors [32]. This system
is required to maximize the optical power in the reso-
nant cavities and keep it stable during data collection.



A set of optical wavefront sensors is used to sense inter-
nal misalignments [33]. At the same time, DC quadrant
photodetectors sense beam positions relative to a global
reference frame. The test mass angular motions are sta-
bilized to 3nrad rms, keeping power fluctuations in the
arm cavities smaller than 1% on the time scale of a few
hours.

B. Strain Calibration

For the astrophysical analyses, the homodyne readout
of the differential arm cavity length needs to be calibrated
into dimensionless units of strain [34]. This is compli-
cated by the fact that the feedback servo for this degree-
of-freedom has a bandwidth of about 100 Hz, extending
well into the band of interest. Denoting the control signal
sent to the end test masses with s, and the error signal,
as measured by the photodiodes in units of W, with e,
the strain signal h is

h=As+C e, (5)

where A is the calibration of the actuator strength into
strain and is computed using dynamical models. Transfer
function C' is the optical response from strain to the error
signal and is given by

47TGarmL G rcPinP

where P, is the interferometer input power and Ppo is
power of the local oscillator coming out from the interfer-
ometer. Signal recycling cavity gain Gg,. = 9.2 is in the
denominator since differential arm signal is anti resonant
in this cavity.

Ideally, the actuator transfer function A is stable over
time. In practice, a time-varying charge accumulates on
the test masses, changing the actuation strength and in-
troducing noise into the gravitational wave channel (see
Sec. ITIID). The optical transfer function C' is also non-
stationary, being modulated mainly by angular motion
of the test masses.

The optical response C' is tracked using a system
known as the “photon calibrator”, which consists of an
auxiliary Nd*T: YLF laser (operating at a wavelength of
1047 nm), an acousto-optic modulator, and a set of inte-
grating spheres [35]. This calibration system actuates on
the end test masses, applying set of sinusoidal excitations
via radiation pressure, to track variations of the optical
gain and of the differential coupled cavity pole frequency.
Three weeks of such data are shown in Fig. 4, showing
that the optical response of the detectors is stable over
time.

The absolute accuracy of the photon calibrator is lim-
ited by the uncertainties in its photodetector calibration,
as well as any optical losses between the test mass and
the photodetector. Overall, the uncertainty in the cali-
bration of the interferometer over the entire operational
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FIG. 4. Time-varying response of the Advanced LIGO de-
tectors. The top panel shows the optical gain variations over
a time span of one month, whereas the bottom panel shows
the variations of the differential coupled cavity pole frequency
over the same time span. The blue traces are for the LIGO
Livingston Observatory (L1) and the red traces for the LIGO
Hanford Observatory (HI).

frequency range from 10Hz—5kHz is estimated to be
smaller than 10% and 10 degrees [30].

IIT. ANALYSIS OF THE INSTRUMENTAL
NOISE

The calibrated gravitational wave signal is compared
to the known noises in order to understand what lim-
its the sensitivity of the instrument as a function of fre-
quency. Fig. 5 summarizes the noise contributions from
various sources to the gravitational wave channel for the
Livingston and Hanford detectors. The coupling of each
noise source to the gravitational wave channel at a fre-
quency f is estimated using the following equation:

L(f) = Loh(f) = T(f) x N(f), (7)

where N (f) is the noise spectrum measured by an auxil-
iary (witness) sensor or computed using analytical model,
and T'(f) is the measured or simulated transfer function
from this sensor to the gravitational wave channel.
Noise sources can be divided into classes according to
their origins and coupling mechanisms [37, 38]. One clear
way to differentiate noises is to split them into displace-
ment and sensing noises: displacement noises cause real
motion of the test masses or their surfaces, while sensing
noises limit the ability of the instrument to measure test
mass motion. However, this distinction is not perfect,
since some noise sources (e.g., laser amplitude noise) can
be assigned to both categories, as discussed in Sec. IIT E.
Another way to classify noise sources is to divide them
into fundamental, technical and environmental noises.
Fundamental noises can be computed from first princi-
ples, and they determine the ultimate design sensitivity
of the instrument. This class of noises, which includes
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FIG. 5. Noise budget plots for the gravitational wave channels
of the two LIGO detectors. The strain sensitivities are sim-
ilar between the two sites. Plot (a) shows the low-frequency
curves for L1, whereas Plot (b) shows the high-frequency
curves for H1 detector. Quantum noise is the sum of the
quantum radiation pressure noise and shot noise. Dark noise
refers to electronic noise in the signal chain with no light in-
cident on the readout photodetectors. Thermal noise is the
sum of suspension and coating thermal noises. Gas noise is
the sum of squeezed film damping and beam tube gas phase
noises. The coupling of the residual motion of the Michelson
(MICH) and signal recycling cavity (SRCL) degrees of free-
dom to gravitational wave channel is reduced by a feedforward
cancellation technique. At low frequencies, there is currently
a significant gap between the measured strain noise and the
root-square sum of investigated noises. At high frequencies,
the sensitivity is limited by shot noise and input beam jitter.

thermal and quantum noise, cannot be reduced without
a major instrument upgrade, such as the installation of
a new laser or the fabrication of better optical coatings.
Technical noises, on the other hand, arise from electron-
ics, control loops, charging noise and other effects that
can be reduced once identified and carefully studied. En-
vironmental noises include seismic motion, acoustic and
magnetic noises. The design of Advanced LIGO calls for

the contributions of technical and environmental noises
to the gravitational wave channel to be small compared
to fundamental noises. In practice, the sensitivity can
be reduced due to unexpected noise couplings. Many
technical and environmental noises have been identified
and are discussed in the following sections. At the same
time, the dominant noise contributor in the frequency
range 20-100 Hz has not yet been identified.

The narrowband features in the sensitivity plots shown
in Fig. 5 are caused by power lines (60 Hz and harmonics),
suspension mechanical resonances, and excitations that
are deliberately added to the instrument for calibration
and alignment purposes. These very narrow lines are eas-
ily excluded from the data analysis, while the broadband
noise inevitably limits the instrument sensitivity. The
latter is therefore a more important topic of investiga-
tion.

A. Seismic and thermal noises

Below 10Hz, there is significant displacement noise
from residual seismic motion. On average, at both
the Livingston and Hanford sites, the ground moves by
~ 107 m/v/Hz at 10 Hz—ten orders of magnitude larger
than the Advanced LIGO target sensitivity at this fre-
quency. To address this difference, seismic noise is fil-
tered using a combination of passive and active stages.
The test masses are suspended from quadruple pendu-
lums [22]. These passive filters have resonances as low
as 0.4 Hz and provide isolation as 1/f® in the detection
bandwidth. The pendulums are mounted on multistage
active platforms [39, 40]. These systems use very-low-
noise inertial sensors to provide the required isolation
in the detection band and at lower frequencies (below
10 Hz). This isolation is crucial for bringing the interfer-
ometer into the linear regime and allowing the longitu-
dinal control system to maintain it on resonance. The
active platforms combine feedback and feedforward con-
trol to provide one order of magnitude of isolation at
the microseism frequencies (around 0.1 Hz) and three or-
ders of magnitude between 1 Hz and 10Hz. Most of the
suspension resonances are located in this band, where
ground excitation from anthropogenic noise and wind is
significant.

Fluctuations of local gravity fields around the test
masses—caused by ground motion and vibrations of the
buildings, chambers, and concrete floor—also couple to
the gravitational wave channel as force noise [41] (grav-
ity gradient noise). The coupling to the differential arm
length displacement is given by

. Ngrav(f)
M =2 a2 0
Ngrav(f) = ﬁGpNsei(f)v

where Ngray is the fluctuation of the local gravity field
projected on the arm cavity axis, the factor of 2 ac-
counts for the incoherent sum of noises from the four test



masses, G is the gravitational constant, p ~ 1800 kg m—3

is the ground density near the mirror, 8 ~ 10 is a geo-
metric factor, and N; is the seismic motion near the
test mass. Since the ground near the test masses moves
by ~ 10~°m/+/Hz at 10 Hz, local gravity fluctuations at
this frequency are Ngray ~ 107'°m s72/4/Hz and the to-
tal noise coupled into the gravitational wave channel at
10Hz is L ~ 5 x 10~ m/v/Hz. Gravity gradient noise is
one of the limiting noise sources of the Advanced LIGO
design in the frequency range 10-20Hz. However, the
typical sensitivity measured during O1 is still far from
this limitation.

Thermal noises arise from finite losses present in me-
chanical systems and couple to the gravitational wave
channel as displacement noises. Several sources of ther-
mal noise can be identified. Suspension thermal noise [12]
causes motion of the test masses due to thermal vibra-
tions of the suspension fibers. Coating Brownian noise
is caused by thermal fluctuations of the optical coatings,
multilayers of silica and titania-doped tantala [43—46].
Thickness of the coatings was optimized to reduce their
thermal noise and provide the required high reflectiv-
ity of the mirrors [47, 48]. Thermal noise also arises in
the substrates of the test masses [49, 50], but this effect
is less significant. Thermal noise levels are analytically
computed using the fluctuation-dissipation theorem [51]
and independent measurements of the losses of materi-
als. The model predicts that thermal noise limits the
Advanced LIGO design sensitivity in the frequency band
10-500 Hz, but is below current sensitivity by a factor of
> 3.

B. Quantum noise

Quantum noise is driven by fluctuations of the opti-
cal vacuum field entering the interferometer through the
antisymmetric port [52, 53]. This fundamental noise cou-
ples to the interferometer sensitivity in two complemen-
tary ways [54]. For one, vacuum fluctuations disturb the
optical fields resonating in the arm cavities, creating dis-
placement noise by exerting a fluctuating radiation pres-
sure force that physically moves the test masses [55, 50].
The vacuum field is amplified by the optical cavities, and
the noise seen in the differential arm channel is given by:

2

1.38x 1077 / Py \ 2
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where h is Planck constant and P, is the power cir-
culating in the arm cavities. This “quantum radiation
pressure noise” imposes a fundamental limit to the de-
sign sensitivity below 40 Hz, though it is still far from
being a concern at the present operating power [21].
The vacuum fluctuations entering interferometer
through the antisymmetric port also introduce shot noise
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in the gravitational wave channel [57]. Vacuum fluctua-
tions also mix with the main beam due to optical losses
between the interferometer and the photodetector. In
the current state of Advanced LIGO 25% of power at
the antisymmetric port is lost due to the output Faraday
isolator, mode mis-match of the beam into the output
mode cleaner cavity, and imperfect quantum efficiencies
of the photodetectors. So the fraction of the power that
is transmitted to the photodiodes is n = 0.75.

Differential arm sensing noise due to shot noise on the
photodetectors can be written as L(f) = LoNsnot/C ()7,
where Ngpor = (2h1/77PLo)1/2 is the shot noise on the
photodetector in units of W/v/Hz. The signal transfer
function C(f) is determined by Eq. 6. The total shot
noise is given by equations

L(f) = ) e ) 7L
- 47TGarm Gprc-Pinn K—(f)

100kvv>1/2 1 m
Parmn K,(f) \/HZ'

Local oscillator power Pp,o cancels out in the final equa-
tion, and shot noise level is independent of the differential
arm offset for small offsets AL < 100 pm.

The Advanced LIGO optical configuration is tuned to
maximize power circulating in the arm cavities. Com-
mon coupled cavity build—up (ratio between the power
resonating in the arms and power entering the interfer-
ometer) is related to the losses in the arm cavities by

(10)

L(f)y=2x10"% <

1
Gcomm 5 2Y ) (11)
arm

where Y, is round trip optical loss in one arm. Dur-
ing Ol the power circulating in the arm cavities was
Geomm =~ 5000 greater than the power entering the in-
terferometer, corresponding to a round trip optical loss
of Yam =~ 100ppm in each arm cavity. The target op-
tical gain for Advanced LIGO was 7500, which corre-
sponds to round trip losses in the arm cavities of about
75 ppm. This number can possibly be achieved once the
test masses are replaced after the second science run.
The discrepancy in the round trip losses between the
predicted and measured values is currently under study.
Shot noise limits the design sensitivity above 40 Hz, and
the current sensitivity above 100 Hz.

C. Gas noise

The Advanced LIGO optics are located inside vacuum
chambers. The gas pressure in the corner station, where
the dual-recycled Michelson interferometer is housed, and
in the 4-km arm tubes, is maintained below 10~¢ Pa. The
presence of residual gas causes both displacement and
sensing noise: thermal motion of gas molecules inside the
vacuum chambers results in momentum exchange with



the test masses via collisions; meanwhile, forward scat-
tering of photons by the gas molecules in the arm tubes
modulates the optical phase of the beam.

1. Squeezed film damping

Residual gas in the vacuum system exerts a damp-
ing force on the test masses and introduces displacement
noise [58]. This noise is amplified by a factor of ~10 be-
low 100 Hz due to the small gap of 5 mm between the end
test and reaction masses [59] (the top view of a test mass
and its surroundings is shown in Fig. 7). The total noise
can be estimated by applying the fluctuation-dissipation
theorem or by running a Monte Carlo simulation [60].
The coupling coefficient depends on the gas pressure and
the molecular mass, and it is found to be (below 100 Hz)

1/4
Fp=reart () () e 02

where p is the residual gas pressure in Pa, and m is the
mass of a gas molecule. The calculated squeezed film
damping noise shown in Fig. 5 (a) is the sum of con-
tributions from nitrogen (py, ~ 6 x 10~7 Pa), hydrogen
(pm, ~ 2 x 107%Pa) and water (pg,0 ~ 1077 Pa).
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FIG. 6. Measurement of the gas phase noise for the two dif-
ferent pressures (average values are 10 uPa and 6 uPa) in one
4km arm of the Livingston detector. The red and blue traces
show total measured noise before and after the pump down.
The dashed black curve shows the quantum noise level, which
is independent of the pressure in the arms. The green and or-
ange curves show total classical noise at pressure 10 uPa and
6 uPa correspondingly. The magenta and violet curves show
the estimated gas phase noises. Reduction of classical noise
is in agreement with the model that was used to compute
gas phase noise. The gray curve shows other classical noises
which do not depend on the gas pressure. Below 300 Hz there
is an unknown 1/f noise. At higher frequencies, classical noise
grows with frequency, and is dominated by dark noise of the
photodetectors and laser frequency noise.
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2. Phase noise

Phase noise induced by the stochastic transit of
molecules through the laser beam in the arm cavities,
can be modeled by calculating the impulsive disturbance
to the phase of the laser field as a gas molecule moves
through the beam [(1]. Such a model was used to esti-
mate the high frequency part of gas noise curve shown
in Fig. 5 (b). This estimation accounts for the pressure
distribution in the arm cavities along with the profile of
the laser beam, with the most significant noise contri-
bution coming from the geometrical center of the tube,
where the beam waist is located. The expected noise
from residual gas is given by

m
L(f)=4x 10—21NgaWTTZ
N — (g) (mgas)” ! (:2)"
gas aH2 mH2 1078 b

where ag,s is the polarization of the gas molecules.

The estimation of the gas phase noise was verified by
changing the pressure in one of the arms by a factor of
3 at the end station and factor of 1.7 at the half-way
point. A variation of differential arm noise was measured
using relative intensity fluctuations at the output port, as
shown in Fig. 6. Though, as discussed in Sec. III B, the
sensitivity above 100 Hz is limited by shot noise, classical
noise can be revealed by incoherent subtraction of shot
noise from the measured signal. Using this technique,

classical noise was observed to change during this test as
predicted by the model.

(13)

D. Charging noise

During the Advanced LIGO commissioning, it was
discovered that the electrostatic actuation on the test
masses was not symmetric among the four electrodes lo-
cated on the reaction mass (see Fig. 7). This mismatch in
actuation strength is caused by electrostatic charge [62],
which is distributed on the test masses in a non-uniform
manner and is time dependent.

Ideally, there should be no charge on the test masses,
except for the one accumulated due to electrostatic ac-
tuation. However, some electric charge may be left by
imperfect removal of the First Contact polymer used for
cleaning and protection of the optics [63]. Moreover, sur-
faces of the test masses also lose electrons due to UV
photons, generated by nearby ion pumps used in the vac-
uum system. Dust particles in the vacuum system pro-
vide yet another source of charging. It was discovered
that the charge distribution changes on the week time
scale. An order-of-magnitude estimate of the charge den-
sity on the front and back surfaces of the end test masses
is 0 ~ 107! C/cm?. This number was achieved by ex-
citing the electrodes and the potential of the ring heaters
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FIG. 7. Top and front views of a test mass showing the ar-
rangement of the electrodes, high reflective (HR) coating, ring
heater and surrounding metal cage. Electrodes are used for
actuation on the test mass. The ring heater is used to correct
the curvature of the mirror.

while measuring the longitudinal and angular motion of
the test mass.

There are two coupling mechanisms of charging noise
to the gravitational wave channel. The first mechanism
arises due to interaction of the time — variant charge with
the metal cage around the test mass. The second cou-
pling mechanism comes from voltage fluctuations of the
various pieces of grounded metal in the vicinity of the
test mass. Voltage noise creates fluctuations of the elec-
tric field F and applies a force Fy; on the test mass ac-
cording to the following equation

F.p = / EodsS, (14)

where the integral is computed over both the front and
back surfaces of the test mass. In this paper, we consider
only the second coupling mechanism, since it is estimated
to be the dominant one.

The broadband voltage noise on the ground plane is
measured to be roughly 1uV/ VvHz. This number was
measured between the grounded suspension cage and the
floating ring heaters. Since the characteristic distance
between the test masses and the metal cage is 10 cm, the
fluctuations in the electric field near the test mass are
~107°V/m/v/Hz. The total noise coupling above 10 Hz
is estimated using the equation

F.p - 1016 o m
MQ2rf)2 " f2 10-11C/cm? Hz

The coupling of voltage fluctuations on the ground
plane to the gravitational wave signal was reduced by a
factor of 10-100 by discharging the test masses. Charge
from the front surface can be efficiently removed using ion
guns [64, 65]: positive and negative ions are introduced
into the chamber, when the pressure inside is ~ 103 Pa,
and annihilate surface charges on the front surface of the
test mass. During the discharge procedure, it was found
that the ions cannot efficiently reach the back surface
due to the small gap between the test mass and the re-
action mass, as shown in Fig. 7. The back surface of the
end test masses was discharged by opening the chambers,
separating the test and reaction mass, and directing an
ion gun at close range towards the surfaces in the gap.

L(f) = (15)
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E. Laser amplitude and frequency noise

Advanced LIGO employs a Nd:YAG nonplanar ring
oscillator as the main laser [16]. Intensity and frequency
fluctuations of such a laser can be roughly approximated
as 107*/f /v/Hz and 10*/ f Hz/\/Hz, respectively, in the
frequency range 10Hz—5kHz. In the same band, the
Advanced LIGO requirements are ~ 10~8 /y/Hz for in-
tensity noise and ~ 107¢Hz/ VHz for frequency noise.
In order to meet those requirements, a hierarchical con-
trol system is implemented. First of all, laser noises are
actively suppressed using intensity and frequency stabi-
lization servos. Additionally, laser noise on the beam en-
tering the main interferometer is passively filtered by K
(Eq. 4) due to the common-mode coupled cavity pole.

For laser amplitude noise, there are several coupling
mechanisms. First of all, the presence of the nonzero dif-
ferential arm offset AL needed for the homodyne readout
means that the carrier light at the antisymmetric port is
directly modulated by amplitude noise entering the in-
terferometer. In addition, mismatches in the circulating
arm powers and in the mirror masses also lead to inten-
sity noise coupling through radiation pressure force at
low frequencies (below 50 Hz).
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FIG. 8. Measured transfer function of intensity fluctuations
from interferometer input to the antisymmetric port. The
blue trace corresponds to the case when substrate lenses of
input test masses are matched. The red trace shows the cou-
pling when substrate lenses are different by 7.5 uD. For the
difference of 40 uD the coupling above 60 Hz increases up to
-25dB.

Above 100 Hz, the most significant broadband coupling
of laser amplitude noise comes from unequal effective
lenses in the input test masses, due to substrate inho-
mogeneity. The presence of imbalanced lenses creates
a direct conversion of the fundamental laser mode into
higher-order spatial modes. As these modes do not res-
onate in the arm cavities, they are not filtered by the
common-mode coupled cavity, and they therefore con-
tribute to the coupling of laser intensity noise with a
flat transfer function. A thermal compensation system
(TCS) [66], which employs auxiliary COq laser beams
and ring-shaped heating elements, has been installed to
compensate for such imbalances. Fig. 8 shows that the



coupling of intensity noise can be significantly reduced
by equalizing the substrate lenses using the TCS system:
if no correction is applied, the differential lens power
is 40 uD and the coupling coefficient at 300 Hz is more
than 40dB larger than the lowest value attainable with
a proper TCS correction.

Laser frequency noise is largely cancelled at the anti-
symmetric port by virtue of the Michelson interferome-
ter common-mode rejection (~ 1000 at 100 Hz). How-
ever, residual frequency noise couples into the gravita-
tional wave channel through the intentional asymmetry
that is introduced into the Michelson interferometer to
produce the necessary interference conditions for the RF
control sidebands, and through imbalances in arm cavity
reflectivities and pole frequencies [67, 68]. The achieved
laser frequency noise performance is limited primarily by
sensing noises (shot noise, photodiode noise, and elec-
tronics noise) in the feedback control that stabilizes the
laser frequency to the interferometer’s common (mean)
arm length. In Advanced LIGO, noise in the frequency
stabilization error signals limits the residual frequency
noise of the beam entering the main interferometer to
~ 1076 Hz/\/I-E between 10 and 100 Hz, and increasing
as f above 100 Hz.

F. Auxiliary Degrees-of-Freedom

The use of a dual-recycled Michelson interferometer
optimizes the detector response to gravitational waves.
Additionally, active control of the mirror angular degrees
of freedom is important to stabilize the interferometer op-
tical response. However, any noise in the associated aux-
iliary degrees of freedom will couple to the gravitational
wave channel at some level. Fig. 9 shows the typical
noise in the auxiliary longitudinal degrees of freedom cal-
ibrated into displacement, as well as the typical angular
noise in one of the arm cavity pitch degrees of freedom.

Any residual fluctuation of the Michelson length Nyjch
couples to the transmitted power of the output mode
cleaner, where the gravitational wave channel is trans-
duced. The coupling mechanism is similar to that of a
differential arm length fluctuation, but without the am-
plification factor provided by the arm cavity build-up
Garm = 270:

1
Garm

L(f) = Nmich(f)~ (16>
This coupling coefficient depends only weakly on the
differential arm offset and alignment, unless the power
build-up in the arm cavities is significantly changed.
Residual fluctuations of the signal recycling cavity
length also couple to the gravitational wave channel, due
to the differential arm offset AL, through a radiation
pressure force exerted on the test masses by the res-
onating optical fields. In the frequency range from 10
to 70Hz, the differential arm noise L(f) due to signal

13

recycling cavity longitudinal noise Ny can be modeled
as

016 AL

M= 0

Nsrcl(f)7 (17)

where the numerical factor is determined mainly by the
signal recycling mirror reflectivity and the masses of the
cavity mirrors. Besides this linear coupling, a non-linear
component appears due to low-frequency modulation of
the differential arm offset AL (by ~ 10 — 20%), which
arises from unsuppressed angular motion of the inter-
ferometer mirrors. Such motion generates higher-order
mode content in the beam exiting the interferometer
through the antisymmeteric port, leading to modulation
of the power transmitted by the output mode cleaner and
forcing the differential arm length servo to compensate
by changing the offset AL. At higher frequencies (above
70Hz), the coupling of the signal recycling cavity longi-
tudinal noise depends on the mode matching between the
signal recycling cavity and the arm cavities. This can be
tuned using the thermal compensation system discussed
above.

The coupling of the power recycling cavity length to
the differential arm channel is caused by imbalances in
the two arm cavities and cross couplings with other lon-
gitudinal degrees of freedom. Residual power recycling
cavity length noise is less significant (by a factor of > 10)
compared to other degrees of freedom of the dual-recycled
Michelson interferometer.

Finally, any residual angular motion of the test masses
Nang couples to the gravitational wave channel geomet-
rically due to beam mis-centering d on the mirrors, ac-
cording to the equation

L(f) = d X Nang(f)- (18)

The beam mis-centering itself is also modulated by the
mirror angular motion d = d + dgae, where d and da.
Nang are stationary and non-stationary components of
the beam position. For this reason, the coupling of the
angular motion can be linear and non-linear. The angular
feedback servos are optimized to suppress low-frequency
motion of the cavity axis and d,. while avoiding injection
of sensor noise at high frequencies.

The linear coupling of the auxiliary degrees of freedom
to the gravitational wave channel is mitigated using a re-
altime feed-forward cancellation technique. Witness sig-
nals are properly reshaped using time-domain filters, and
the cancellation signals are applied directly to the test
masses. This feed-forward scheme significantly reduces
the contribution of noise in auxiliary degrees of freedom
to the gravitational wave channel in the frequency range
10-150 Hz. The typical subtraction factors for Michelson
length noise, signal recycling cavity length noise, and an-
gular noise are 30, 7 and 20, respectively.
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(d) Test mass angular motion (pitch).

FIG. 9. Noise budgets for auxiliary degrees of freedom. Plot (a) shows the noise curves for the Michelson length, Plot (b) for
the power recycling cavity length, Plot (c) for the signal recycling cavity length, and Plot (d) for the angular motion of one
of the test masses in pitch. The signals are measured with the full interferometer operating in the linear regime. The most
significant noise sources in the dual-recycled Michelson degrees of freedom are seismic noise, shot noise and electronics noise
in the interferometric readout chains and in local sensors on the individual suspensions. Quantum noise in the signal recycling
cavity length is signiticantly affected by the differential arm offset below 10 Hz. In addition to coupling to the gravitational
wave channel, auxiliary degrees of freedom also couple to each other. For example, beam splitter motion above 10 Hz is caused
by the Michelson control loop and dominates the power and signal recycling cavity length fluctuations in the frequency range

10-50 Hz.

G. Oscillator noise

The RF oscillator used to generate the Pound-Drever-
Hall control sidebands has phase and amplitude noise,
and these couple to the gravitational wave channel via
both sensing intensity noise and displacement noise in
the dual-recycled Michelson degrees of freedom.

Noise in the oscillator amplitude causes the RF modu-
lation index to vary with time, thus changing the amount

of power contained in the RF sidebands. Since the to-
tal power in the carrier and the RF sidebands is actively
controlled, fluctuations in the RF sideband field ampli-
tudes produce fluctuations in the carrier field amplitude
(i.e., audio sidebands). These audio sidebands propagate
through the interferometer and couple into the gravita-
tional wave channel via the same mechanisms as laser
intensity noise as discussed in Sec. IITE. Additionally,
as intensity noise of RF sidebands is not filtered by the



common coupled cavity pole and the output mode cleaner
has a finite attenuation at the RF sideband frequencies
(~ 6 x 107> W/W for the 45 MHz sidebands), a small
amount of sideband power fluctuations appears directly
on the GW readout photodiodes. The oscillator ampli-
tude noise coupling for the 9 MHz and 45 MHz sidebands
was measured to be

L(f) =5 x 10722 NE?TP L o
10-6 | K_(f) vVHz

o o (19)
L(f) =5 x 10721 [ —2me =
o ( 0 ) K(7) itz

where NJ,, and N} is the relative amplitude noise of

9MHz and 45 MHz sidebands in units of 1/v/Hz.
Oscillator phase noise is converted to RF sideband am-
plitude noise through any optical path length imbalance
in the interferometer’s Michelson degree of freedom. The
main sources of imbalance are the intentional asymme-
try in the Michelson interferometer and a transmissivity
difference of the input test masses (which produces a dif-
ferential phase delay when the sidebands are reflected
from each arm) [68]. The oscillator phase noise coupling
for the 9 MHz and 45 MHz sidebands was measured to be

_10-21 Nghf 1 m
HH =10 (10—2 K() Vi

o (N gl? 1 m
L(f) =10 5 ,
1072 | K_(f) VHz
where Ngh and Néﬁ is the relative phase noise of 9 MHz
and 45 MHz sidebands in units of 1/v/Hz.

H. Beam jitter

Pointing fluctuations, quantified by the factor Aw/w,
where w is the beam size and Aw is the transverse mo-
tion of the beam, are also a source of noise. On the input
side, significant beam jitter is caused by angular and lon-
gitudinal motion of the steering mirrors, located in air.
The input mode cleaner, located in vacuum, attenuates
the input beam jitter by a factor of ~ 150. Fig. 10
shows the relative pointing fluctuations before and after
the input mode cleaner.

Residual input beam jitter is converted into intensity
fluctuations by the interferometer resonant cavities: the
power and signal recycling cavities, the arm cavities, and
finally the output mode cleaner cavity. In the frequency
range 100 Hz—1 kHz, the coupling coefficient from relative
pointing noise at the interferometer input to the relative
intensity noise at the antisymmetric port is ~ 0.01.

Fig. 5 shows that the contribution of the beam jitter is
close to the measured strain noise at a few peaks between
200 and 600 Hz. These structures in the noise are due to
resonances of mirror mounts in the in-air input beam
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FIG. 10. Relative pointing noise before and after the input
mode cleaner in L1 interferometer. Acoustic peaks in the L1
and H1 interferometers are at slightly different frequencies.
The red trace shows the spectrum measured before the input
mode cleaner, where laser beam enters the vacuum system.
The blue trace shows the measured jitter after the input mode
cleaner. This measurement is limited by the sensing noise of
the quadrant photodetector at a level of 4 x 1078 /\/I-ﬂ The
green trace is the estimated relative pointing noise used in
the calculation of the jitter coupling to the gravitational wave
channel. This curve is computed by dividing the red spectrum
by the filtering coefficient of the input mode cleaner.

path. This contribution has been reduced by improving
the stiffness of the optical elements, thus reducing the
motion.

On the output side, beam jitter is caused by angular
motion of the output steering mirrors. These are sin-
gle pendulum stage suspended optics, located in vacuum.
While interferometer alignment is actively controlled to
reduce beam jitter, any residual angular motion modu-
lates the power transmitted by the output mode cleaner
and thereby couples to the gravitational wave channel.

I. Scattered light noise

Motion of the suspended optics is significantly reduced
compared to the ground, as discussed in Sec. ITI A. How-
ever, the vacuum chambers and arm tubes are not iso-
lated from the ground seismic or the ambient acoustic
noises. This motion can couple to the gravitational wave
channel through scattered light.

A small portion of the laser light scatters out of the
main beam when it hits the optical components. Part
of this light is scattered back from the moving cham-
ber walls, baffles, mirrors, or photodiodes, and couples
into the main beam as shown in Fig. 11. Backscattered
light modulates the main beam in phase and amplitude,
and introduces noise into the gravitational wave channel.
The phase modulation is directly detected at the anti-
symmetric port, and amplitude modulation moves the
test masses by means of radiation pressure. Signifiant



scattering processes occur inside the arm cavities, at the
input and output ports, and in the recycling cavities.

1. Beam tubes

Input End
test mass

test mass

4km

FIG. 11. Scattering inside the arm cavity. The test mass coat-
ing irregularities and dust determines how much light can be
scattered in and out from the main beam. After the scattered
light hits the beam tube baffles, which are not isolated from
ground motion or acoustic noise, it partially scatters back into
the main beam. This process couples motion of beam tubes
to the gravitational wave channel.

Light scattered out from the main beam by the test
masses couples motion of the 4-km beam tube to the
gravitational wave channel. The bi-directional Reflec-
tivity Distribution (BRDF) function of the test masses
depends on the imperfections in the mirror surface. If the
wavelength of a coating ripple is A, then the angle be-
tween the scattered light and the main beam is § = A/\,..
The amount of power scattered out from the main beam
depends on the amplitude of the ripple. The fractional
power scattered out in the cone with half angle § <« 1
and width df is given by:

dP, 4r\?% _db
s o (22) & = BRDF,, x dQ 21
P ()\> S)\ R , X (21)

where S(0/\) = S(\ ') is the power spectral density
of the coating aberrations [69, 70], and dQ = 2760df is
solid angle of scattering. For # ~ 1, the BRDF can be
approximated as BRDF,,, = 3 x 1076 cos(#) sr*.

Light scattered out from the main beam hits a baf-
fle in the arm tube and scatters back into the main
beam. The measured BRDF of the baffle at large an-
gles is BRDF;, = 0.02sr~ 1. In order to get back into the
main beam, light from the baffle scatters into the solid
angle \2/r? x BRDF,,, [71], where 7 is the distance from
the baffle to the test mass. The total optical power P,
that recombines with the main beam is determined by
the following equation [72]:

dP,
Parm

2
— 2 BRDF? BRDF,dS. (22)
T

The coating profiles were measured [21] and can be ap-
proximated as a smooth polynomial function in the wide
range of A\, for narrow angle scattering. However, the
high-reflectivity coatings applied on the end test masses
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show a distinct azimuthal ripple in the coating surface
height. The spatial wavelength of the ripple is 7.85 mm
and its maximum amplitude is 1 nm pk-pk. This ripple
is located at radii beyond about 3cm from the mirror
center and significantly contributes to the scattered light
noise [73]. The total scattered light noise contribution to
the differential arm channel from the tube motion Niype

1S
20 = 25 N 1) 107 W), (29)

where the integral is computed over all scattering angles
(the factor of 2 accounts for the incoherent sum of all four
test masses and for the fact that 1/2 of the baffle motion,
in power, is in the phase quadrature of the main field).
Equation 23 accounts only for the phase quadrature and
ignores radiation pressure noise. This is a valid assump-
tion for the current optical power P,,,, =~ 100kW.

The estimated scattered light noise, coming from the
arm cavities, is a factor of 30-100 below the current sen-
sitivity of the interferometer. This result was confirmed
by applying periodic mechanical excitation to the beam
tube at different frequencies and measuring the response
in the gravitational wave channel.

2. Vacuum chambers

Similar scattering processes occur in the chambers and
short tubes in the corner station, where the dual-recycled
Michelson interferometer is located. One method to as-
sess the contribution of scattering noise to the detector
background is to inject known acoustic signals and mea-
sure the response in the gravitational wave channel [74].
In general, coupling of scattered light noise is not linear
but rather modulated by the low frequency motion of the
scattering surfaces. For this reason, instead of measuring
the transfer function from the excitation to the sensor,
we monitor excess power in the signal spectrum. Then we
make a projection of scattered light noise to the gravita-
tional wave channel according to the following equation

chc(f)
Nexc(fy

where Loy and Ney are the spectra of the gravitational
wave channel and of the back scattering element motion,
respectively, when an excitation to the element is applied,
and Napmp is the motion of the scattering element without
any excitation. Fig. 12 shows that the projected ambient
acoustic noise coupling to the gravitational wave channel
is below the measured sensitivity.

L(f) = Namn () (24)

3. Fringe wrapping

Scattered light may also manifest itself through up-
conversion of the scattering element motion. One exam-
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FIG. 12. Projected contribution of the ambient acoustic noise
to the gravitational wave channel. An acoustic excitation was
applied at different locations near the vacuum chambers: near
the end test masses of both arm cavities (X and Y), near the
dual-recycled Michelson interferometer (corner station), and
near the main laser.

ple of such a non-linear scattering process is fringe wrap-
ping. In Advanced LIGO fringe wrapping occurs at the
antisymmetric port of the interferometer. Optical imper-
fections in the output mode cleaner cause a fraction of
the light (~ 1 ppm) to travel back into the interferometer.
Most of this light is rejected by the output Faraday isola-
tor, but a small fraction of scattered light gets through.
Then this light is reflected from the instrument and trav-
els back to the output mode cleaner, with an additional
varying phase shift due to the relative motion of the out-
put mode cleaner and the interferometer. The relative
intensity fluctuation (RIN) at the output mode cleaner
transmission due to backscattering is given by [75]

RIN(¢) = 2r cos(4m Nome(t)/N), (25)

where 7 = 107° — 107% is effective field reflectivity of
the interferometer output port and Nypm(t) is the dis-
tance fluctuation between the interferometer and the
output mode cleaner. Since this distance is not con-
trolled, the amplitude of Nymc(t) can be as large as sev-
eral wavelengths, and the cosine in the above equation
wraps this rapidly varying phase between 0 and 27, lead-
ing to up-conversion of the low frequency motion of the
length. The resulting “scattering shelves” are seen in
the differential arm length spectrum with a cutoff fre-
quency of 2/A X dNyme/dt. In Advanced LIGO, when
the micro-seismic motion is higher than normal, this pro-
cess increases the gravitational wave channel noise below
20 Hz [76]. Fig. 13 shows scattering shelves in the gravita-
tional wave channel during the low frequency modulation
of the distance Nype.
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FIG. 13. Scattering shelves in the differential arm channel.
The red trace shows the spectrum when RMS of the ground
velocity is below ~ 2um/sec (usual conditions). The blue
trace shows the spectrum when the distance between the out-
put mode cleaner and the interferometer was modulated at
low frequencies by ~ 6 um/sec.

J. Sensing and actuation electronics noise

This section summarizes noise contributions from elec-
tronic circuits in photodetectors, actuators, analog-to-
digital (ADC) and digital-to-analog (DAC) converters
and whitening boards, all of which are essential for sens-
ing optical signals and actuating on suspensions. From a
design perspective, all electronics noise should be smaller
than fundamental noises.

For the differential arm length signal, a pair of reverse-
biased InGaAs photodiodes, equipped with in-vacuum
preamplifiers, measures the light transmitted by the out-
put mode cleaner. Subsequently, these signals are ac-
quired by a digital system through analog-to-digital con-
verters, further dividing sensing noise into two types:
dark noise and ADC noise. Dark noise includes any dark
current produced by the photodiodes, Johnson-Nyquist
noise of the readout transimpedance, and noise in all
other downstream analog electronics. A current noise
level of ~10pA/v/Hz, at 100 Hz, is present in each pho-
todetection circuit, equivalent to the shot noise of a DC
current of 0.3 mA. This can be compared against the ac-
tual operating current of 10 mA. Taking the coherent sum
of two photodetectors into account, we estimate the dark
noise to be a factor of 8.2 lower than the shot noise at
100 Hz, as shown in Fig. 5. ADC input noise is sup-
pressed by inserting additional analog gain and filtering,
referred to as “whitening filters”. An offline measure-
ment of the ADC noise shows that it is below the current
best noise level by a factor of more than 10 over the entire
measurement frequency band.

The other important noise in this category is noise in
the actuation used to apply feedback control forces on
the mirrors. Any excess noise at the level of the re-
quired actuation couples directly to mirror displacement.
The most critical actuation noise is due to the digital-to-



analog convertors that bridge the digital real-time control
process and the analog suspension drive electronics. It is
a significant challenge to achieve both the high-range ac-
tuation, needed to bring the interferometer into the lin-
ear regime from an uncontrolled state (lock acquisition)
[27], and low-noise actuation for operation in the obser-
vation state. This issue has been tackled by installing a
gain-switchable force controller, which has several oper-
ational states. After the interferometer is brought into
the linear regime, the controller state is changed from the
high-dynamic-range to the low-noise state. Also, noise
from the digital-to-analog converter is mechanically fil-
tered via the suspension force-to-displacement transfer
function above ~ 0.5Hz. The current estimate puts the
actuation noise is as low as 3 x 1018 m/\/I-E at 10 Hz.

Lastly, active damping of the suspension systems is
known to introduce noise. Below 5Hz, the high-Q sus-
pension resonances are damped by sensing the motion
of the suspension relative to its support using shadow
sensors [23]. According to dynamical suspension mod-
els, noise from the local damping control is estimated to
be 2 x 10718 m/\/IE at 10 Hz, and rapidly decreases at
higher frequencies.
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FIG. 14. Sensitivity of the two Advanced LIGO detectors
to binary neutron star inspirals, averaged over sky position
and orientation and 1 minute of data. The sensitivity drop
in the L1 interferometer at the end of the run was caused by
electronics noise at one of the end stations. This noise was
identified and eliminated shortly after the observing run.

A common figure of merit for ground-based interfero-
metric detectors is their sensitivity to the inspiral of two
neutron stars, averaged over relative orientations of the
binary system and sky locations. A plot of the sensitivity
of the LIGO detectors to signals of this type is given in
Fig. 14, over a one-month timescale.

If the sum of all the noises is truly Gaussian and sta-
tionary, the strain noise density at a given frequency will
vary randomly in time following a Rayleigh distribution.
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FIG. 15. 95th (20) and 99.7th (30) percentiles of the noise in
each frequency bin during five days of operations (Oct 15-20).
The expectations for stationary Gaussian noise at each per-
centile are given by the colored dashed lines. Both detectors
exhibit some non-stationary behavior at low frequencies, due
to varying noise couplings with the environment.

In Fig. 15, we compare the 95th and 99.7th percentiles of
the noise in each frequency bin to the expectation for sta-
tionary Gaussian noise. Deviations from the expectation
are due to non-stationary noises (e.g., transient environ-
mental disturbances that generate very short-duration
bursts of excess noise, mostly at low frequency) or nar-
rowband features that are coherent over long timescales.
Above 100Hz, the deviation from stationary Gaussian
noise is small. Below 100 Hz, the fluctuations can mask
or mimic gravitational waves and must be addressed by
further commissioning and, for O1 data, through vetoes
that are applied following data collection and analysis.

The characterization and mitigation of the detector
noise is the focus of a large collaborative effort between
instrument specialists and the gravitational wave data
analysis community [77, 78].

IV. CONCLUSIONS

The first Advanced LIGO observational run (O1)
started in September 2015 and concluded in January
2016. The observatory was running at unprecedented
sensitivity to gravitational waves in the frequency range
10Hz—10kHz. The average distance at which Advanced
LIGO could detect the coalescence of binary black hole
systems with individual masses of 30 M, and with signal-
to-noise ratio of 8 was 1.3 Gpc. The reach for binary neu-
tron star inspirals during the first science run was about
75 Mpc.

The commissioning of Advanced LIGO lasted for ~ 1
year before the beginning of O1. During this period, a
variety of technical noise sources was discovered and elim-
inated. In this paper, we discussed the dominant noise
sources that limited Advanced LIGO sensitivity during
the first science run. The coupling of auxiliary degrees



of freedom, laser amplitude noise, suspension actuation
and other technical noises considered in this paper were
significantly reduced.

Future work is required to find the remaining noise
sources. In particular, below 100Hz, the sum of all
known noise sources in the gravitational wave channel
could not explain the measured sensitivity curve.

Above 100 Hz, the Advanced LIGO sensitivity was lim-
ited mostly by photon shot noise. For this reason, one
certain activity on the commissioning agenda is to in-
crease the interferometer input power and ultimately to
introduce squeezed states of light [57, 79, 80]. During
the first science run, Advanced LIGO operated in the
low power regime: input power was 25 W out of max-
imum laser power of ~ 180 W. A set of technical diffi-
culties must be overcome before power can be increased.
First of all, parametric instabilities [31], which arise at
high power, should be damped to keep the interferom-
eter in the linear regime. Second, angular instabilities
in the arm cavities [32] are expected to occur when the
circulating arm power reaches ~ 500kW. This problem
will be addressed by changing the angular control system
control topology. Lastly, power levels on the photodetec-
tors should be adjusted in order to avoid their damage
during lock losses, when stored optical energy leaves the
interferometer through the output ports.
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