
Mathematical Supplement:

Geometry and Gravity for Weak Fields

1 Hyperbolic Functions

Hypberbolic functions relate the points on the arc of a hyperbola to the x and y coordinates
defining that system. They are somewhat analogous to the trigonometric sine and cosine
functions defined on a unit circle. In particular, the hyperbolic sine, sinh and hyperbolic
cosine, cosh take real arguments and render real values. They are defined as

sinh(a) =
ea − e−a

2
(1)

cosh(a) =
ea + e−a

2
(2)

with the hyperpolic tangent being defined as the ratio of these two, in analogy with
trigonometry.

tanh(a) =
sinh(a)

cosh(a)
=
ea − e−a

ea + e−a
(3)

Additional functions like coth, sech and csch can be defined in analogy with trigonometry
as well.

The trigonometric sine and cosine functions are related to a circle, with their argument
being the angle measured from the positive x-axis to the point on the circle in question.

sin2(θ) + cos2(θ) = 1 (4)

The hyperbolic sine and cosine are related to a hyperbola, with their argument being twice
the area in a wedge-shaped region between the positive x axis, the hyperbola, and a line
from the origin to the point on the hyperbola in question; see Figure 1.

cosh2(a)− sinh2(a) = 1 (5)
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Figure 1: The hyperbolic sine and cosine take a real argument, a, twice the wedge-shaped
area highlighted in red, and relate it to the x (= cosh(a)) and y (= sinh(a)) coordinates as
shown by the red lines. Credit: Wikipedia

Graphically, the hyperbolic sine and cosine relate the area shown in red in Figure 1 to
the x and y axes.

x = cosh(a) (6)

y = sinh(a) (7)

Note that the area indicated is half the argument of the sinh and cosh functions. Since
they take an area as an argument, their inverse functions are sometimes referred to as the
area hyperbolic sine, cosine, etc.

2 Matrix and Vector Operations

2.1 Matrix and Vector Multiplication

To multiply two vectors together we have

A ·B = AµBµ = AµηµνB
ν = A0B0 +A1B1 +A2B2 +A3B3

This is called an inner product of A and B and must occur between a contravariant and
covariant vector, i.e., one with an upper index and one with a lower index. It is clearly
symmetric and it commutes.
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There is in general no cross product - it is only defined in 3-dimensions. In any case,
we will not have need of an antisymmetric multiplication operator between vectors for this
course.

We often have to multiply a vector by a matrix. A coordinate transformation is an
example. We can use a shorthand component notation for this.

V µ′ = Aµ
′
βV

β

This operation takes a vector V into some primed coordinate system. The vector remains
the same, of course, only its coordinates are different. That is why we generally put the
prime on the coordinate indices, not on the vector itself, but this is a matter of taste.

We can also write this in a different form by using bold typeface to indicate matrix and
vector multiplication. In that case, the only place to put the prime is on the vector itself,
but you should not be confused that V is different from V′: They are the same vector,
just represented in different coordinate systems.

V′ = AV

Explicitly we have

(V0′ , V1′ , V2′ , V3′) =


A00 A10 A20 A30

A01 A11 A21 A31

A02 A12 A22 A32

A03 A13 A23 A33




V0
V1
V2
V3

 (8)

The components of V ′ are

V0′ = V0A00 + V1A10 + V2A20 + V3A30

V1′ = V0A01 + V1A11 + V2A21 + V3A31

V2′ = V0A02 + V1A12 + V2A22 + V3A32

V3′ = V0A03 + V1A13 + V2A23 + V3A33

2.2 The Trace of a Matrix

We also sometimes need to find the trace of a matrix. This is the sum of its diagonal
elements. We can write this as
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trace(A) = Aµµ = A0
0 +A1

1 +A2
2 +A3

3

In the matrix from Equation 8, this works out to A00 +A11 +A22 +A33.

The trace of a matrix is also a contraction of the matrix on its two indices, but we
can also contract objects that have a rank larger than two. We just have to specify which
indices are being contracted. So, for instance, if we had a four-dimensional third-rank
tensor, Mα

βγ , we could contract it on its first and third indices as follows:

Mβ = Mα
βα ≡M0

β0 +M1
β1 +M2

β2 +M3
β3 (9)

Or if we liked, we could contract it on its first and second like this:

Mγ = Mα
αγ ≡M0

0γ +M1
1γ +M2

2γ +M3
3γ (10)

In each case, we end up with a tensor of rank two lower than we started with, so in
these examples we end up with two vectors. These vectors are in general distinct though,
as you can tell by looking at Equations 9 and 10; they have different components - unless
Mα

βγ is symmetric on its second and third indices.

We cannot take a contraction of the second and third components of M unless we raise
one of them; just as in the case of the dot product, contraction is only defined between an
upper (contravariant) and lower (covariant) index.

2.3 Contravariant and Covariant Vectors

The terms contravariant and covariant vectors cause a lot of confusion when people begin
to study general relativity. They are both just vectors in the way we generally think of
them, but they are expressed in different bases, and they have different transformation
properties. In contemporary work in GR “contravariant” and “covariant” have fallen out
of favor. Alternate terms “dual-vector” or “one-form” have replaced covariant vector, and
contravariant vectors are usually now referred to simply as vectors. The new nomenclature
doesn’t do anything to make the differences between the two objects less confusing, but it
is less cumbersome. We will adopt it for the remainder of this section.

It is actually the need to have the contraction between two vectors on their indices yield
an invariant scalar quantity that is the best way to think about the two kinds of objects.
This is related to their transformation properties.
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If we consider a vector, ~V , we know that we can write it as a combination of its
components and basis vectors, for some basis âβ.

~V = V β âβ (11)

= V 0â0 + V 1â1 + V 2â2 + V 3â3 (12)

This expression gives a contravariant vector (it has a raised index), or from now on just
vector, not a scalar. Each of the âβ are individual vectors, they are not components of
vectors like the V β. 1

If we wished, we could write ~V in terms of some other basis, âα′ , where the prime on
the α indicates that we are using a different set of basis vectors than before. Then we could
write ~V in terms of this new basis.

~V = V α′
âα′ (13)

= V 0′ â0′ + V 1′ â1′ + V 2′ â2′ + V 3′ â3′ (14)

These two expressions are the same vector, but it is represented in two different coordi-
nate systems, each with its own basis vectors. As such, the components of the vector are
different in the different coordinates.

We know that we can express either coordinate basis in terms of the other if we employ
some transformation matrix, Λ. For example, we could write,

âα′ = Λα′β âβ (15)

= Λα′0 â0 + Λα′1 â1 + Λα′2 â2 + Λα′3 â3 (16)

If we substitute Equation 15 into Equation 13 we have the following:

~V = V α′
âα′ = V α′

Λα′β âβ (17)

Comparing Equations 17 and 11 we see that we can relate the components of ~V in the two
coordinate bases.

V β = V α′
Λα′β (18)

Comparing Equation 17 to Equation 15 we see that the transformation to go from the
primed vector components to the unprimed is the same as that to go from the unprimed
to the primed basis vectors. In other words, the vector components and the basis vectors
have inverse transformation properties.

1Note: the index of a basis vector is lowered to allow the summation convention to work, and it is
important so that the mathematical machinery we use will work. This does not mean that a vector basis
is composed of covariant vectors (one-forms). The âβ are vectors.
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We can perform the exact same analysis for contravariant vectors, from now on, one-
forms. For instance, we can write a one-form P̃ in terms of basis one-forms ω̂α.

P̃ = Pβω̂
β (19)

As before, the raised index on ω̂β does not mean that it is a vector. It is a basis one-form,
and the raised index is simply a convenience to allow the summation convention to work
with the one-form components Pβ.

We could go through exactly the analysis for one-forms that we did for vectors. We
would find that just as for vectors, the transformation properties of the one-form compo-
nents are the inverse of the one-form bases - you can try this out if you wish. What’s
more, we would find that the one-forms transform inversely to the vectors. That is why
they were called contra-variant vectors: their transformation properties were contrary to
that of vectors. We have

V β = V α′
Λα′β (20)

Pβ = Pα′Λα
′
β (21)

And for the bases:

ω̂β = ω̂α
′
Λα′β (22)

âβ = âα′Λα
′
β (23)

This might seem completely innocuous. It is not. If we write the contraction of P̃ with ~V
we have V βPβ, and we know that this is a scalar that should be invariant. So if we write
it in another basis we should get the same result: V βPβ = V β′

Pβ′ . Substituting explicitly
from Equations 20 and 21 we get:

V βPβ = V α′
Λα′βPµ′Λ

µ′
β (24)

= V α′
Pµ′Λα′βΛµ

′
β (25)

= V α′
Pµ′δα′µ

′
(26)

= V α′
Pα′ (27)

Where δα′µ
′

is the Kronecker delta function:

δµ
ν ≡

{
1 : µ = ν
0 : µ 6= ν

(28)

So if we use a one-form and a vector, we get the invariance of scalar quantities that we
expect. If we use two one-forms or two vectors in a similar product we will not get this
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invariance. You can try it by explicitly substituting as we have in Equation 24.

The most familiar one-form is probably the gradient of a scalar field. If you work out
its transformation properties you will see that they are the inverse transformation proper-
ties of the position vector. This is because to take the gradient you must “divide” by the
position. Try it and you will see. A (overly) general rule of thumb is, any time you divide
by position you will get a one-form. If you do not, you will get a vector. The difference
between the two is very often not important, but in relativity, where we cannot count on
a single coordinate basis to describe all of space and time, we have to be especially careful
about the transformation properties of the quantities we are working with. That is why
the distinction between vectors and one-forms becomes so important when we work in GR.

3 Maxwell’s Equations Are Invariant

We claimed that Maxwell’s equations are invariant under Lorentz transformations. To
show this we must show that Fµν and jν transform like the four-vector position, x, under
Lorentz transformations.

Recall that in 3+1 dimensions the Maxwell equations can be written as

∂Fµν

∂xµ
=

4π

c
jν (29)

and

∂Fµν

∂xα
+
∂F να

∂xµ
+
∂Fαµ

∂xν
= 0 (30)

The four-vector current density jν is

jν ≡ (cρ, jx, jy, jz) (31)

We will begin with the current density j. It is the four-current and has parts made up
of the normal 3-current density and the charge density, ρ.

j ≡ (cρ, jx, jy, jz) (32)

We can write the charge density as follows:

ρ = qn = qn0γ (33)

and similarly
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ji = qnvi = qn0γvi (34)

with

γ ≡ 1√
1− (v/c)2

(35)

and q is the charge on a particle, n0 is the number of particles per unit volume in the rest-
frame of the particles and v is the speed at which the particles flow. If we have different
kinds of particles with different charges we can treat each type separately, so in the interest
of simplicity we will assume that all the particles are the same; it costs us no generality.

We know that the charge will satisfy the continuity equation:

∇ · J +
∂ρ

∂t
= 0 (36)

where J is the usual 3-dimensional current density. Charge is conserved in any given frame
according to Equation 36. In other words, no charges are created or destroyed, they merely
move about.

We can write the current density in terms of the four-velocity U = (γ, vxγ, vyγ, vzγ) if
we like.

jµ = qn0Uµ (37)

and Equation 36 in terms of jµ:
jµ,µ = 0 (38)

Since the charge current density is the product of a scalar (rest-frame charge density)
and a four-vector (four-velocity), it must itself be a four-vector. As such it is invariant
under Lorentz transformations.

To show that Fµν is invariant we must show that each of its indices transform as a
four-vector. Begin by writing one of the combined Maxwell equations as it would appear
in a different coordinate system:

∂Fα
′β′

∂xα′
=

4π

c
jβ

′
(39)

We know we can use the Lorentz transformation to write the quantities in these equa-
tions in terms of unprimed coordinates as follows:

∂

∂xα′
= Λµα′

∂

∂xµ
(40)
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and

jβ
′

= Λβ
′
σ j

σ (41)

We can substitute these expressions into Equation 39...

Λµα′
∂Fα

′β′

∂xµ
=

4π

c
Λβ

′
σj
σ (42)

and then multiply the result by Λνβ′ to get

Λνβ′Λµα′
∂Fα

′β′

∂xµ
=

4π

c
Λνβ′Λβ

′
σj
σ (43)

Now, using the identity Λνβ′Λβ
′
σ = ηνσ we arrive at

Λνβ′Λµα′
∂Fα

′β′

∂xµ
=

4π

c
jν (44)

Combining this with Equation 29 we get

Λνβ′Λµα′
∂Fα

′β′

∂xµ
=
∂Fµν

∂xµ
(45)

Now, we know that a simple coordinate transformation must be linear, in that any
change in the field in one reference frame must be mirrored in any other frame in a linear
way: doubling the field in one frame must double it in another. What’s more, we cannot
create a field simply by changing our frame of reference: If no field exists in one frame,
then no field can exist in any other. With these conditions we know that the fields in the
two frames must be related in the following way

Fµν = Mµν
α′β′Fα

′β′
(46)

for some constant coefficients Mµν
α′β′ . We thus can rewrite Equation 45 as

Λνβ′Λµα′
∂Fα

′β′

∂xµ
=
∂Mµν

α′β′Fα
′β′

∂xµ
(47)

Since the coefficients Mµν
α′β′ are constant we can remove them from the derivative on the

right hand side, leaving us with

Λνβ′Λµα′
∂Fα

′β′

∂xµ
= Mµν

α′β′
∂Fα

′β′

∂xµ
(48)

and since these equations must be true for arbitrary Fµν , it must be true that
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Λνβ′Λµα′ = Mµν
α′β′ (49)

This last relation allows us to rewrite Equation 46 as follows...

Fµν = Λµα′Λνβ′Fα
′β′

(50)

This is exactly what we wished to show, that each of the indices of Fµν transformed
like the position four-vector. Since both Fµν and jν are invariant under Lorentz transfor-
mations, the Maxwell’s equations are as well.

4 Deriving the Riemann Tensor from Parallel Transport

By definition, the parallel transport a vector along some path, its covariant derivative along
that path must vanish, or in other words,

∂V α

∂xβ
+ V µΓαµβ = 0 (51)

We had shown that in parallel transporting a vector along a coordinate path we had a
change in the vector given by

δV α
x1=a = −

∫
x1=a

Γαν2V
νdx2 (52)

We had four similar contributions from the four path segments enclosing our region of
space, as shown in Figure 2. These segments are:

segment 1: (A to B) x1 = a→ a+ δa x2 = b
segment 2: (B to C) x2 = b→ b+ δb x1 = a+ δa
segment 3: (C to D) x1 = a+ δa→ a x2 = b+ δb
segment 4: (D to A) x2 = b+ δb→ b x1 = a

For each segment we have a contribution like Equation 52 to the change in the vector V α.
Explicitly these are

segment 1: (A to B) δV α
1 =

∫
x2=b Γαν2V

νdx1

segment 2: (B to C) δV α
2 =

∫
x1=a+δa Γαν2V

νdx2

segment 3: (C to D) δV α
3 = −

∫
x2=b+δb Γαν2V

νdx1

segment 4: (D to A) δV α
4 = −

∫
x1=a Γαν2V

νdx2
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Figure 2: A possible path around which to parallel transport a vector. Credit: http:

//www.mth.uct.ac.za/omei/gr/chap6/node9.html.

The negative signs account for the change in direction of the path on the different segments.
Adding up all these changes we will find that the difference in the vector is

V α
final − V α

initial =

∫
x2=b

Γαν2V
νdx1 +

∫
x1=a+δa

Γαν2V
νdx2

−
∫
x2=b+δb

Γαν2V
νdx1 −

∫
x1=a

Γαν2V
νdx2

(53)

Since δa and δb are both small, we can expand these expressions and deal with just the
first order terms. This will give us the simpler expression

V α
final − V α

initial =

∫ a+δa

a
δb

∂

∂x2
[Γαν1V

ν ] dx1 −
∫ b+δb

b
δa

∂

∂x1
[Γαν2V

ν ] dx2 (54)

To first order we can integrate to get

V α
final − V α

initial = δbδa

[
∂

∂x2
[Γαν1V

ν ]− ∂

∂x1
[Γαν2V

ν ]

]
(55)

We can differentiate the terms inside the square brackets and replace the derivative of V ν

using Equation 51, relabeling the indices as necessary. After making this substitution and
relabeling dummy indices we will find that the change in the vector is given by
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V α
final − V α

initial = δbδa

[
∂

∂x2
Γαν1 −

∂

∂x1
Γαν2 + Γαν2Γ

ν
µ1 − Γαν1Γ

ν
µ2

]
V ν (56)

This is the same equation we had before, with 1 here taking the place of σ in the main
text, and 2 taking the place of λ. As before, the term inside the square brackets is the
Riemann curvature tensor.

5 Gauge Transformations

Gauge transformations are changes to a function that allow it to remain a solution to some
mathematical operator. They are most familiar from the study of electricity and mag-
netism, where we have the four Maxwell equations.

∇ ·E =
ρ

ε0
(57)

∇×E +
∂B

∂t
= 0 (58)

∇ ·B = 0 (59)

∇×B− µ0ε0
∂E

∂t
= µ0J (60)

The fields E and B are related to potentials Φ and A, respectively, as

E = −∇Φ (61)

B = ∇×A (62)

We can modify the potentials if we like as follows

A→ A +∇Λ (63)

φ→ Φ− ∂Λ

∂t
(64)

for an arbitrary function Λ. Any such choice of potentials will satisfy the Maxwell equations
if the potentials satisfied them before the transformation was applied. For details see
Jackson (1975). We are then free to choose potentials such that

∇ ·A +
∂Φ

∂t
= 0 (65)
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Any family of such solutions form a set of solutions of the Maxwell equations under the
chosen gauge condition 65, which in this example is called the Lorentz gauge, though it is
completely unrelated to the one for gravity having the same name. The arbitrary choice
of gauge for the solutions to the linearized gravity equations is similar enough in process
to the electromagnetic case that both are called gauge transformations.

For the gravitational case, it is not the properties of the fields we wish to understand, it
is the properties of the metric tensor of the perturbed flat spacetime. In particular, we can
explore the behavior of this metric under small changes in coordinate. Imagine we have

xα
′

= xα + ξα(xβ) (66)

for ξ small, of the same order as h. Then we also have

xα = xα
′ − ξα(xβ

′
) (67)

Differentiating these expressions we get

∂xα
′

∂xβ
= xα,β + ξα,β (68)

and

∂xα

∂xβ′ = xα,β − ξα,β (69)

since to first order ξα,β = ξα,β′ .

We can transform the metric using the following expression

gα′β′(x′) = xγ,α′x
δ
,β′gγδ(x) (70)

Substituting Equations 68 and 69 into Equation 70 we find that we can express the
metric in the new coordinates as

gα′β′(x′) = ηαβ + hαβ + ξα,β − ξβ,α (71)

This is exactly like the metric in the original coordinates, except that we must identify the
perturbation as a slightly transformed perturbation hα′β′ .

hα′β′ = hαβ + ξα,β − ξβ,α (72)

These types of transformations are called gauge transformations because of their similar-
ity to the gauge transformations of electromagnetism. Note that we have four independent
equations in Equations 68 and 69, so we have four parameters we can use to set a gauge.
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5.1 Background Lorentz Transformations

Because we assume we are working in a nearly-flat region of spacetime, we can also perform
transformations that look very much like Lorentz transformations in special relativity.
Recall that Lorentz transformations, in addition to the familiar rotations or translations,
can also give a boost to switch us from one inertial frame to another. So in our nearly flat
space we can write

gα′β′ = Λµα′Λνβ′gµν = Λµα′Λνβ′ηµν + Λµα′Λνβ′hµν (73)

This equation looks suspiciously like a tensor equation, but it is not. The transformation
Λ is only defined in this local region of nearly-flat spacetime, and h is definitely not a tensor.
But if we confine ourselves to this Minkowski-like region of spacetime then we can treat h
like a tensor. This is very convenient. For instance, if h were a tensor we could write the
Riemann curvature tensor in terms of it. You can try this if you like; just substitute the
nearly flat form of g into Equation 62 in Geometry and Gravity in Weak Fields (hereafter,
WF). The result is to replace each g in Equation 62 (WF) with an h. Because these are
not true Lorentz transformations (they are defined only on the locally flat background
Minkowski spacetime, not on the entire curved spacetime of GR), we call these background
Lorentz transformations.

6 Polarization

We wish to know how a passing gravitational wave will affect two particles on nearby
geodesics. To understand this problem we can employ the equation of geodesic deviation,
which tells us how adjacent geodesics2 vary with respect to one another. In a flat spacetime
like Minkowski space, geodesics that are parallel in one region will be parallel everywhere,
but that is not the case when the spacetime is curved.

We can imagine two test particles are essentially at rest and separated by a displacement
vector ξα. The geodesic deviation equation for these particles is

∇U∇Uξα = RαµνβU
µUνξβ (74)

The four-velocities for the particles are U = (1, 0, 0, 0) to first order because they move
only very slowly. The two covariant derivatives ∇U simplify to being regular derivatives
with respect to proper time because that is the only non-zero part of the four-velocities
U . So we can simplify the geodesic deviation equation as follows (we write the remaining
equations with the first index on R lowered, just to simplify the expressions; it makes no
difference to the result)

2Recall that a geodesic is the spacetime path followed by an object in free fall. It is the closest thing to
a straight line in curved spaces.
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d2ξα
dτ2

= RαµνβU
µUνξβ (75)

The only terms on the right hand side that do not vanish are those for Uλ 6= 0, which
implies

d2ξα
dτ2

= Rα00βξ
β (76)

Using Equation 62 in WF we can write the Riemann tensor in terms of the perturbations
in the transverse-traceless gauge as follows

Rαµνβ =
1

2

(
hTTαβ,νµ + hTTµν,βα − hTTαν,βµ − hTTβµ,αν

)
(77)

Rα00β =
1

2

(
hTTαβ,00 + hTT00,βα − hTTα0,β,0 − hTTβ0,α0

)
(78)

in which hTT refers to the matrix in Equation 95 of WF. In the transverse-traceless gauge
hTTα0 = 0 for all α. This simplifies the Riemann tensor greatly.

Rα00β =
1

2
hTTαβ,00 =

1

2

∂2

∂t2
hTTαβ (79)

We can now substitute this result into Equation 76, which becomes

∂2ξα

∂τ2
=

1

2
ξβ
∂2

∂t2
hTT

α
β (80)

Here we have raised α to match ξα. Let’s consider the case in which the waves travel in the
z direction. We know that α and β can only take on the values x or y. Furthermore, we
know that hαβ can take on only the values A11, A22, A12, A21 from the matrix in Equation
94 in WF.

We will define h+ ≡ A11 and h× ≡ A21 and then consider solutions of Equation 80
consistent with these definitions. There are two cases to look at: (1) h× = 0 and (2)
h+ = 0, and we explore these solutions in Section 6.3 in WF.
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